Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}+\frac{2}{3}i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, \frac{3}{4}-\frac{2}{3}i.
\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}\right)^{2}-\left(\frac{2}{3}\right)^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\frac{145}{144}}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)i^{2}}{\frac{145}{144}}
Multiply complex numbers 5+2i and \frac{3}{4}-\frac{2}{3}i like you multiply binomials.
\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right)}{\frac{145}{144}}
By definition, i^{2} is -1.
\frac{\frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}}{\frac{145}{144}}
Do the multiplications in 5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right).
\frac{\frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i}{\frac{145}{144}}
Combine the real and imaginary parts in \frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}.
\frac{\frac{61}{12}-\frac{11}{6}i}{\frac{145}{144}}
Do the additions in \frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i.
\frac{732}{145}-\frac{264}{145}i
Divide \frac{61}{12}-\frac{11}{6}i by \frac{145}{144} to get \frac{732}{145}-\frac{264}{145}i.
Re(\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}+\frac{2}{3}i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)})
Multiply both numerator and denominator of \frac{5+2i}{\frac{3}{4}+\frac{2}{3}i} by the complex conjugate of the denominator, \frac{3}{4}-\frac{2}{3}i.
Re(\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}\right)^{2}-\left(\frac{2}{3}\right)^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\frac{145}{144}})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)i^{2}}{\frac{145}{144}})
Multiply complex numbers 5+2i and \frac{3}{4}-\frac{2}{3}i like you multiply binomials.
Re(\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right)}{\frac{145}{144}})
By definition, i^{2} is -1.
Re(\frac{\frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}}{\frac{145}{144}})
Do the multiplications in 5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right).
Re(\frac{\frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i}{\frac{145}{144}})
Combine the real and imaginary parts in \frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}.
Re(\frac{\frac{61}{12}-\frac{11}{6}i}{\frac{145}{144}})
Do the additions in \frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i.
Re(\frac{732}{145}-\frac{264}{145}i)
Divide \frac{61}{12}-\frac{11}{6}i by \frac{145}{144} to get \frac{732}{145}-\frac{264}{145}i.
\frac{732}{145}
The real part of \frac{732}{145}-\frac{264}{145}i is \frac{732}{145}.