Evaluate
\frac{732}{145}-\frac{264}{145}i\approx 5.048275862-1.820689655i
Real Part
\frac{732}{145} = 5\frac{7}{145} = 5.048275862068966
Share
Copied to clipboard
\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}+\frac{2}{3}i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, \frac{3}{4}-\frac{2}{3}i.
\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}\right)^{2}-\left(\frac{2}{3}\right)^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\frac{145}{144}}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)i^{2}}{\frac{145}{144}}
Multiply complex numbers 5+2i and \frac{3}{4}-\frac{2}{3}i like you multiply binomials.
\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right)}{\frac{145}{144}}
By definition, i^{2} is -1.
\frac{\frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}}{\frac{145}{144}}
Do the multiplications in 5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right).
\frac{\frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i}{\frac{145}{144}}
Combine the real and imaginary parts in \frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}.
\frac{\frac{61}{12}-\frac{11}{6}i}{\frac{145}{144}}
Do the additions in \frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i.
\frac{732}{145}-\frac{264}{145}i
Divide \frac{61}{12}-\frac{11}{6}i by \frac{145}{144} to get \frac{732}{145}-\frac{264}{145}i.
Re(\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}+\frac{2}{3}i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)})
Multiply both numerator and denominator of \frac{5+2i}{\frac{3}{4}+\frac{2}{3}i} by the complex conjugate of the denominator, \frac{3}{4}-\frac{2}{3}i.
Re(\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\left(\frac{3}{4}\right)^{2}-\left(\frac{2}{3}\right)^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+2i\right)\left(\frac{3}{4}-\frac{2}{3}i\right)}{\frac{145}{144}})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)i^{2}}{\frac{145}{144}})
Multiply complex numbers 5+2i and \frac{3}{4}-\frac{2}{3}i like you multiply binomials.
Re(\frac{5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right)}{\frac{145}{144}})
By definition, i^{2} is -1.
Re(\frac{\frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}}{\frac{145}{144}})
Do the multiplications in 5\times \frac{3}{4}+5\times \left(-\frac{2}{3}i\right)+2i\times \frac{3}{4}+2\left(-\frac{2}{3}\right)\left(-1\right).
Re(\frac{\frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i}{\frac{145}{144}})
Combine the real and imaginary parts in \frac{15}{4}-\frac{10}{3}i+\frac{3}{2}i+\frac{4}{3}.
Re(\frac{\frac{61}{12}-\frac{11}{6}i}{\frac{145}{144}})
Do the additions in \frac{15}{4}+\frac{4}{3}+\left(-\frac{10}{3}+\frac{3}{2}\right)i.
Re(\frac{732}{145}-\frac{264}{145}i)
Divide \frac{61}{12}-\frac{11}{6}i by \frac{145}{144} to get \frac{732}{145}-\frac{264}{145}i.
\frac{732}{145}
The real part of \frac{732}{145}-\frac{264}{145}i is \frac{732}{145}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}