Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{22+12\sqrt{2}}{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{2}\right)^{2}.
\frac{22+12\sqrt{2}}{9+6\sqrt{2}+2}
The square of \sqrt{2} is 2.
\frac{22+12\sqrt{2}}{11+6\sqrt{2}}
Add 9 and 2 to get 11.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{\left(11+6\sqrt{2}\right)\left(11-6\sqrt{2}\right)}
Rationalize the denominator of \frac{22+12\sqrt{2}}{11+6\sqrt{2}} by multiplying numerator and denominator by 11-6\sqrt{2}.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{11^{2}-\left(6\sqrt{2}\right)^{2}}
Consider \left(11+6\sqrt{2}\right)\left(11-6\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{121-\left(6\sqrt{2}\right)^{2}}
Calculate 11 to the power of 2 and get 121.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{121-6^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{121-36\left(\sqrt{2}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{121-36\times 2}
The square of \sqrt{2} is 2.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{121-72}
Multiply 36 and 2 to get 72.
\frac{\left(22+12\sqrt{2}\right)\left(11-6\sqrt{2}\right)}{49}
Subtract 72 from 121 to get 49.
\frac{242-72\left(\sqrt{2}\right)^{2}}{49}
Use the distributive property to multiply 22+12\sqrt{2} by 11-6\sqrt{2} and combine like terms.
\frac{242-72\times 2}{49}
The square of \sqrt{2} is 2.
\frac{242-144}{49}
Multiply -72 and 2 to get -144.
\frac{98}{49}
Subtract 144 from 242 to get 98.
2
Divide 98 by 49 to get 2.