Solve for p
p=-\frac{10}{11}\approx -0.909090909
Share
Copied to clipboard
\frac{2}{5}\times 15p+\frac{2}{5}\left(-20\right)=-8p+3\left(p-6\right)
Use the distributive property to multiply \frac{2}{5} by 15p-20.
\frac{2\times 15}{5}p+\frac{2}{5}\left(-20\right)=-8p+3\left(p-6\right)
Express \frac{2}{5}\times 15 as a single fraction.
\frac{30}{5}p+\frac{2}{5}\left(-20\right)=-8p+3\left(p-6\right)
Multiply 2 and 15 to get 30.
6p+\frac{2}{5}\left(-20\right)=-8p+3\left(p-6\right)
Divide 30 by 5 to get 6.
6p+\frac{2\left(-20\right)}{5}=-8p+3\left(p-6\right)
Express \frac{2}{5}\left(-20\right) as a single fraction.
6p+\frac{-40}{5}=-8p+3\left(p-6\right)
Multiply 2 and -20 to get -40.
6p-8=-8p+3\left(p-6\right)
Divide -40 by 5 to get -8.
6p-8=-8p+3p-18
Use the distributive property to multiply 3 by p-6.
6p-8=-5p-18
Combine -8p and 3p to get -5p.
6p-8+5p=-18
Add 5p to both sides.
11p-8=-18
Combine 6p and 5p to get 11p.
11p=-18+8
Add 8 to both sides.
11p=-10
Add -18 and 8 to get -10.
p=\frac{-10}{11}
Divide both sides by 11.
p=-\frac{10}{11}
Fraction \frac{-10}{11} can be rewritten as -\frac{10}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}