Evaluate
\frac{10}{3}\approx 3.333333333
Factor
\frac{2 \cdot 5}{3} = 3\frac{1}{3} = 3.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{57)}\phantom{1}\\57\overline{)190}\\\end{array}
Use the 1^{st} digit 1 from dividend 190
\begin{array}{l}\phantom{57)}0\phantom{2}\\57\overline{)190}\\\end{array}
Since 1 is less than 57, use the next digit 9 from dividend 190 and add 0 to the quotient
\begin{array}{l}\phantom{57)}0\phantom{3}\\57\overline{)190}\\\end{array}
Use the 2^{nd} digit 9 from dividend 190
\begin{array}{l}\phantom{57)}00\phantom{4}\\57\overline{)190}\\\end{array}
Since 19 is less than 57, use the next digit 0 from dividend 190 and add 0 to the quotient
\begin{array}{l}\phantom{57)}00\phantom{5}\\57\overline{)190}\\\end{array}
Use the 3^{rd} digit 0 from dividend 190
\begin{array}{l}\phantom{57)}003\phantom{6}\\57\overline{)190}\\\phantom{57)}\underline{\phantom{}171\phantom{}}\\\phantom{57)9}19\\\end{array}
Find closest multiple of 57 to 190. We see that 3 \times 57 = 171 is the nearest. Now subtract 171 from 190 to get reminder 19. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }19
Since 19 is less than 57, stop the division. The reminder is 19. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}