Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{100\left(1-\frac{1}{100000}\right)}{1-\frac{1}{10}}
Calculate \frac{1}{10} to the power of 5 and get \frac{1}{100000}.
\frac{100\left(\frac{100000}{100000}-\frac{1}{100000}\right)}{1-\frac{1}{10}}
Convert 1 to fraction \frac{100000}{100000}.
\frac{100\times \frac{100000-1}{100000}}{1-\frac{1}{10}}
Since \frac{100000}{100000} and \frac{1}{100000} have the same denominator, subtract them by subtracting their numerators.
\frac{100\times \frac{99999}{100000}}{1-\frac{1}{10}}
Subtract 1 from 100000 to get 99999.
\frac{\frac{100\times 99999}{100000}}{1-\frac{1}{10}}
Express 100\times \frac{99999}{100000} as a single fraction.
\frac{\frac{9999900}{100000}}{1-\frac{1}{10}}
Multiply 100 and 99999 to get 9999900.
\frac{\frac{99999}{1000}}{1-\frac{1}{10}}
Reduce the fraction \frac{9999900}{100000} to lowest terms by extracting and canceling out 100.
\frac{\frac{99999}{1000}}{\frac{10}{10}-\frac{1}{10}}
Convert 1 to fraction \frac{10}{10}.
\frac{\frac{99999}{1000}}{\frac{10-1}{10}}
Since \frac{10}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{99999}{1000}}{\frac{9}{10}}
Subtract 1 from 10 to get 9.
\frac{99999}{1000}\times \frac{10}{9}
Divide \frac{99999}{1000} by \frac{9}{10} by multiplying \frac{99999}{1000} by the reciprocal of \frac{9}{10}.
\frac{99999\times 10}{1000\times 9}
Multiply \frac{99999}{1000} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{999990}{9000}
Do the multiplications in the fraction \frac{99999\times 10}{1000\times 9}.
\frac{11111}{100}
Reduce the fraction \frac{999990}{9000} to lowest terms by extracting and canceling out 90.