Verify
false
Share
Copied to clipboard
\frac{2}{6}-\frac{15}{6}=\frac{-1}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{5}{2} to fractions with denominator 6.
\frac{2-15}{6}=\frac{-1}{6}
Since \frac{2}{6} and \frac{15}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{6}=\frac{-1}{6}
Subtract 15 from 2 to get -13.
-\frac{13}{6}=-\frac{1}{6}
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
\text{false}
Compare -\frac{13}{6} and -\frac{1}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}