Evaluate
\frac{C}{168}+\frac{5}{441}
Factor
\frac{21C+40}{3528}
Share
Copied to clipboard
\frac{7}{882}+\frac{3}{882}+\frac{1}{168}C
Least common multiple of 126 and 294 is 882. Convert \frac{1}{126} and \frac{1}{294} to fractions with denominator 882.
\frac{7+3}{882}+\frac{1}{168}C
Since \frac{7}{882} and \frac{3}{882} have the same denominator, add them by adding their numerators.
\frac{10}{882}+\frac{1}{168}C
Add 7 and 3 to get 10.
\frac{5}{441}+\frac{1}{168}C
Reduce the fraction \frac{10}{882} to lowest terms by extracting and canceling out 2.
\frac{40+21C}{3528}
Factor out \frac{1}{3528}.
21C+40
Consider 28+12+21C. Multiply and combine like terms.
\frac{21C+40}{3528}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}