Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+i+i+i^{2}}{2}
Multiply complex numbers 1+i and 1+i like you multiply binomials.
\frac{1\times 1+i+i-1}{2}
By definition, i^{2} is -1.
\frac{1+i+i-1}{2}
Do the multiplications in 1\times 1+i+i-1.
\frac{1-1+\left(1+1\right)i}{2}
Combine the real and imaginary parts in 1+i+i-1.
\frac{2i}{2}
Do the additions in 1-1+\left(1+1\right)i.
i
Divide 2i by 2 to get i.
Re(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 1+i+i+i^{2}}{2})
Multiply complex numbers 1+i and 1+i like you multiply binomials.
Re(\frac{1\times 1+i+i-1}{2})
By definition, i^{2} is -1.
Re(\frac{1+i+i-1}{2})
Do the multiplications in 1\times 1+i+i-1.
Re(\frac{1-1+\left(1+1\right)i}{2})
Combine the real and imaginary parts in 1+i+i-1.
Re(\frac{2i}{2})
Do the additions in 1-1+\left(1+1\right)i.
Re(i)
Divide 2i by 2 to get i.
0
The real part of i is 0.