Solve for y
y = \frac{\sqrt{201} + 9}{10} \approx 2.317744688
y=\frac{9-\sqrt{201}}{10}\approx -0.517744688
Graph
Share
Copied to clipboard
-5y^{2}+9y+6=0
Multiply both sides of the equation by 2.
y=\frac{-9±\sqrt{9^{2}-4\left(-5\right)\times 6}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 9 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-9±\sqrt{81-4\left(-5\right)\times 6}}{2\left(-5\right)}
Square 9.
y=\frac{-9±\sqrt{81+20\times 6}}{2\left(-5\right)}
Multiply -4 times -5.
y=\frac{-9±\sqrt{81+120}}{2\left(-5\right)}
Multiply 20 times 6.
y=\frac{-9±\sqrt{201}}{2\left(-5\right)}
Add 81 to 120.
y=\frac{-9±\sqrt{201}}{-10}
Multiply 2 times -5.
y=\frac{\sqrt{201}-9}{-10}
Now solve the equation y=\frac{-9±\sqrt{201}}{-10} when ± is plus. Add -9 to \sqrt{201}.
y=\frac{9-\sqrt{201}}{10}
Divide -9+\sqrt{201} by -10.
y=\frac{-\sqrt{201}-9}{-10}
Now solve the equation y=\frac{-9±\sqrt{201}}{-10} when ± is minus. Subtract \sqrt{201} from -9.
y=\frac{\sqrt{201}+9}{10}
Divide -9-\sqrt{201} by -10.
y=\frac{9-\sqrt{201}}{10} y=\frac{\sqrt{201}+9}{10}
The equation is now solved.
-5y^{2}+9y+6=0
Multiply both sides of the equation by 2.
-5y^{2}+9y=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{-5y^{2}+9y}{-5}=-\frac{6}{-5}
Divide both sides by -5.
y^{2}+\frac{9}{-5}y=-\frac{6}{-5}
Dividing by -5 undoes the multiplication by -5.
y^{2}-\frac{9}{5}y=-\frac{6}{-5}
Divide 9 by -5.
y^{2}-\frac{9}{5}y=\frac{6}{5}
Divide -6 by -5.
y^{2}-\frac{9}{5}y+\left(-\frac{9}{10}\right)^{2}=\frac{6}{5}+\left(-\frac{9}{10}\right)^{2}
Divide -\frac{9}{5}, the coefficient of the x term, by 2 to get -\frac{9}{10}. Then add the square of -\frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{9}{5}y+\frac{81}{100}=\frac{6}{5}+\frac{81}{100}
Square -\frac{9}{10} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{9}{5}y+\frac{81}{100}=\frac{201}{100}
Add \frac{6}{5} to \frac{81}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{9}{10}\right)^{2}=\frac{201}{100}
Factor y^{2}-\frac{9}{5}y+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{9}{10}\right)^{2}}=\sqrt{\frac{201}{100}}
Take the square root of both sides of the equation.
y-\frac{9}{10}=\frac{\sqrt{201}}{10} y-\frac{9}{10}=-\frac{\sqrt{201}}{10}
Simplify.
y=\frac{\sqrt{201}+9}{10} y=\frac{9-\sqrt{201}}{10}
Add \frac{9}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}