Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(\frac{\pi }{2}x^{2}-\left(3-\sqrt{3}\right)x\right)+4-2\sqrt{3}=0
Multiply both sides of the equation by 2.
2\left(\frac{\pi x^{2}}{2}-\left(3-\sqrt{3}\right)x\right)+4-2\sqrt{3}=0
Express \frac{\pi }{2}x^{2} as a single fraction.
2\left(\frac{\pi x^{2}}{2}-\left(3x-\sqrt{3}x\right)\right)+4-2\sqrt{3}=0
Use the distributive property to multiply 3-\sqrt{3} by x.
2\left(\frac{\pi x^{2}}{2}-3x+\sqrt{3}x\right)+4-2\sqrt{3}=0
To find the opposite of 3x-\sqrt{3}x, find the opposite of each term.
2\times \frac{\pi x^{2}}{2}-6x+2\sqrt{3}x+4-2\sqrt{3}=0
Use the distributive property to multiply 2 by \frac{\pi x^{2}}{2}-3x+\sqrt{3}x.
\frac{2\pi x^{2}}{2}-6x+2\sqrt{3}x+4-2\sqrt{3}=0
Express 2\times \frac{\pi x^{2}}{2} as a single fraction.
\pi x^{2}-6x+2\sqrt{3}x+4-2\sqrt{3}=0
Cancel out 2 and 2.
\pi x^{2}+\left(-6+2\sqrt{3}\right)x+4-2\sqrt{3}=0
Combine all terms containing x.
\pi x^{2}+\left(2\sqrt{3}-6\right)x+4-2\sqrt{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(2\sqrt{3}-6\right)±\sqrt{\left(2\sqrt{3}-6\right)^{2}-4\pi \left(4-2\sqrt{3}\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, -6+2\sqrt{3} for b, and 4-2\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(2\sqrt{3}-6\right)±\sqrt{48-24\sqrt{3}-4\pi \left(4-2\sqrt{3}\right)}}{2\pi }
Square -6+2\sqrt{3}.
x=\frac{-\left(2\sqrt{3}-6\right)±\sqrt{48-24\sqrt{3}+\left(-4\pi \right)\left(4-2\sqrt{3}\right)}}{2\pi }
Multiply -4 times \pi .
x=\frac{-\left(2\sqrt{3}-6\right)±\sqrt{48-24\sqrt{3}-8\pi \left(2-\sqrt{3}\right)}}{2\pi }
Multiply -4\pi times 4-2\sqrt{3}.
x=\frac{-\left(2\sqrt{3}-6\right)±\sqrt{8\pi \sqrt{3}+48-16\pi -24\sqrt{3}}}{2\pi }
Add 48-24\sqrt{3} to -8\pi \left(2-\sqrt{3}\right).
x=\frac{-\left(2\sqrt{3}-6\right)±2i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{2\pi }
Take the square root of 48-24\sqrt{3}-16\pi +8\pi \sqrt{3}.
x=\frac{6-2\sqrt{3}±2i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{2\pi }
The opposite of -6+2\sqrt{3} is 6-2\sqrt{3}.
x=\frac{6-2\sqrt{3}+2i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{2\pi }
Now solve the equation x=\frac{6-2\sqrt{3}±2i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{2\pi } when ± is plus. Add 6-2\sqrt{3} to 2i\sqrt{-12+6\sqrt{3}+4\pi -2\pi \sqrt{3}}.
x=\frac{3-\sqrt{3}+i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{\pi }
Divide 6-2\sqrt{3}+2i\sqrt{-12+6\sqrt{3}+4\pi -2\sqrt{3}\pi } by 2\pi .
x=\frac{-2i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}+6-2\sqrt{3}}{2\pi }
Now solve the equation x=\frac{6-2\sqrt{3}±2i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{2\pi } when ± is minus. Subtract 2i\sqrt{-12+6\sqrt{3}+4\pi -2\pi \sqrt{3}} from 6-2\sqrt{3}.
x=\frac{-i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}+3-\sqrt{3}}{\pi }
Divide 6-2\sqrt{3}-2i\sqrt{-12+6\sqrt{3}+4\pi -2\sqrt{3}\pi } by 2\pi .
x=\frac{3-\sqrt{3}+i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{\pi } x=\frac{-i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}+3-\sqrt{3}}{\pi }
The equation is now solved.
2\left(\frac{\pi }{2}x^{2}-\left(3-\sqrt{3}\right)x\right)+4-2\sqrt{3}=0
Multiply both sides of the equation by 2.
2\left(\frac{\pi x^{2}}{2}-\left(3-\sqrt{3}\right)x\right)+4-2\sqrt{3}=0
Express \frac{\pi }{2}x^{2} as a single fraction.
2\left(\frac{\pi x^{2}}{2}-\left(3x-\sqrt{3}x\right)\right)+4-2\sqrt{3}=0
Use the distributive property to multiply 3-\sqrt{3} by x.
2\left(\frac{\pi x^{2}}{2}-3x+\sqrt{3}x\right)+4-2\sqrt{3}=0
To find the opposite of 3x-\sqrt{3}x, find the opposite of each term.
2\times \frac{\pi x^{2}}{2}-6x+2\sqrt{3}x+4-2\sqrt{3}=0
Use the distributive property to multiply 2 by \frac{\pi x^{2}}{2}-3x+\sqrt{3}x.
\frac{2\pi x^{2}}{2}-6x+2\sqrt{3}x+4-2\sqrt{3}=0
Express 2\times \frac{\pi x^{2}}{2} as a single fraction.
\pi x^{2}-6x+2\sqrt{3}x+4-2\sqrt{3}=0
Cancel out 2 and 2.
\pi x^{2}-6x+2\sqrt{3}x-2\sqrt{3}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\pi x^{2}-6x+2\sqrt{3}x=-4+2\sqrt{3}
Add 2\sqrt{3} to both sides.
\pi x^{2}+\left(-6+2\sqrt{3}\right)x=-4+2\sqrt{3}
Combine all terms containing x.
\pi x^{2}+\left(2\sqrt{3}-6\right)x=2\sqrt{3}-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\pi x^{2}+\left(2\sqrt{3}-6\right)x}{\pi }=\frac{2\sqrt{3}-4}{\pi }
Divide both sides by \pi .
x^{2}+\frac{2\sqrt{3}-6}{\pi }x=\frac{2\sqrt{3}-4}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x^{2}+\frac{2\left(\sqrt{3}-3\right)}{\pi }x=\frac{2\sqrt{3}-4}{\pi }
Divide -6+2\sqrt{3} by \pi .
x^{2}+\frac{2\left(\sqrt{3}-3\right)}{\pi }x=\frac{2\left(\sqrt{3}-2\right)}{\pi }
Divide -4+2\sqrt{3} by \pi .
x^{2}+\frac{2\left(\sqrt{3}-3\right)}{\pi }x+\left(\frac{\sqrt{3}-3}{\pi }\right)^{2}=\frac{2\left(\sqrt{3}-2\right)}{\pi }+\left(\frac{\sqrt{3}-3}{\pi }\right)^{2}
Divide \frac{2\left(-3+\sqrt{3}\right)}{\pi }, the coefficient of the x term, by 2 to get \frac{-3+\sqrt{3}}{\pi }. Then add the square of \frac{-3+\sqrt{3}}{\pi } to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2\left(\sqrt{3}-3\right)}{\pi }x+\frac{12-6\sqrt{3}}{\pi ^{2}}=\frac{2\left(\sqrt{3}-2\right)}{\pi }+\frac{12-6\sqrt{3}}{\pi ^{2}}
Square \frac{-3+\sqrt{3}}{\pi }.
x^{2}+\frac{2\left(\sqrt{3}-3\right)}{\pi }x+\frac{12-6\sqrt{3}}{\pi ^{2}}=\frac{2\left(\pi \sqrt{3}+6-2\pi -3\sqrt{3}\right)}{\pi ^{2}}
Add \frac{2\left(-2+\sqrt{3}\right)}{\pi } to \frac{12-6\sqrt{3}}{\pi ^{2}}.
\left(x+\frac{\sqrt{3}-3}{\pi }\right)^{2}=\frac{2\left(\pi \sqrt{3}+6-2\pi -3\sqrt{3}\right)}{\pi ^{2}}
Factor x^{2}+\frac{2\left(\sqrt{3}-3\right)}{\pi }x+\frac{12-6\sqrt{3}}{\pi ^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{3}-3}{\pi }\right)^{2}}=\sqrt{\frac{2\left(\pi \sqrt{3}+6-2\pi -3\sqrt{3}\right)}{\pi ^{2}}}
Take the square root of both sides of the equation.
x+\frac{\sqrt{3}-3}{\pi }=\frac{i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{\pi } x+\frac{\sqrt{3}-3}{\pi }=-\frac{i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{\pi }
Simplify.
x=\frac{3-\sqrt{3}+i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}}{\pi } x=\frac{-i\sqrt{-2\pi \sqrt{3}+4\pi +6\sqrt{3}-12}+3-\sqrt{3}}{\pi }
Subtract \frac{-3+\sqrt{3}}{\pi } from both sides of the equation.