Verify
true
Share
Copied to clipboard
\frac{\frac{1\times 5}{2\times 11}}{\frac{1}{2}\times \frac{3}{7}+\frac{1}{2}\times \frac{5}{11}}=\frac{35}{68}
Multiply \frac{1}{2} times \frac{5}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{22}}{\frac{1}{2}\times \frac{3}{7}+\frac{1}{2}\times \frac{5}{11}}=\frac{35}{68}
Do the multiplications in the fraction \frac{1\times 5}{2\times 11}.
\frac{\frac{5}{22}}{\frac{1\times 3}{2\times 7}+\frac{1}{2}\times \frac{5}{11}}=\frac{35}{68}
Multiply \frac{1}{2} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{22}}{\frac{3}{14}+\frac{1}{2}\times \frac{5}{11}}=\frac{35}{68}
Do the multiplications in the fraction \frac{1\times 3}{2\times 7}.
\frac{\frac{5}{22}}{\frac{3}{14}+\frac{1\times 5}{2\times 11}}=\frac{35}{68}
Multiply \frac{1}{2} times \frac{5}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{22}}{\frac{3}{14}+\frac{5}{22}}=\frac{35}{68}
Do the multiplications in the fraction \frac{1\times 5}{2\times 11}.
\frac{\frac{5}{22}}{\frac{33}{154}+\frac{35}{154}}=\frac{35}{68}
Least common multiple of 14 and 22 is 154. Convert \frac{3}{14} and \frac{5}{22} to fractions with denominator 154.
\frac{\frac{5}{22}}{\frac{33+35}{154}}=\frac{35}{68}
Since \frac{33}{154} and \frac{35}{154} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{22}}{\frac{68}{154}}=\frac{35}{68}
Add 33 and 35 to get 68.
\frac{\frac{5}{22}}{\frac{34}{77}}=\frac{35}{68}
Reduce the fraction \frac{68}{154} to lowest terms by extracting and canceling out 2.
\frac{5}{22}\times \frac{77}{34}=\frac{35}{68}
Divide \frac{5}{22} by \frac{34}{77} by multiplying \frac{5}{22} by the reciprocal of \frac{34}{77}.
\frac{5\times 77}{22\times 34}=\frac{35}{68}
Multiply \frac{5}{22} times \frac{77}{34} by multiplying numerator times numerator and denominator times denominator.
\frac{385}{748}=\frac{35}{68}
Do the multiplications in the fraction \frac{5\times 77}{22\times 34}.
\frac{35}{68}=\frac{35}{68}
Reduce the fraction \frac{385}{748} to lowest terms by extracting and canceling out 11.
\text{true}
Compare \frac{35}{68} and \frac{35}{68}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}