Skip to main content
Evaluate
Tick mark Image

Share

\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{3}}{\frac{-1}{\sqrt{3}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}\sqrt{3}}{\frac{-1}{\sqrt{3}}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\frac{-1}{\sqrt{3}}}
Express \frac{\sqrt{2}}{2}\sqrt{3} as a single fraction.
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\frac{-\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{-1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\frac{-\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}\sqrt{3}\times 3}{2\left(-1\right)\sqrt{3}}
Divide \frac{\sqrt{2}\sqrt{3}}{2} by \frac{-\sqrt{3}}{3} by multiplying \frac{\sqrt{2}\sqrt{3}}{2} by the reciprocal of \frac{-\sqrt{3}}{3}.
\frac{3\sqrt{2}}{-2}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{-3\sqrt{2}}{2}
Cancel out -1 in both numerator and denominator.