Evaluate
-\frac{3\sqrt{2}}{2}\approx -2.121320344
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{3}}{\frac{-1}{\sqrt{3}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}\sqrt{3}}{\frac{-1}{\sqrt{3}}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\frac{-1}{\sqrt{3}}}
Express \frac{\sqrt{2}}{2}\sqrt{3} as a single fraction.
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\frac{-\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{-1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{2}\sqrt{3}}{2}}{\frac{-\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{\sqrt{2}\sqrt{3}\times 3}{2\left(-1\right)\sqrt{3}}
Divide \frac{\sqrt{2}\sqrt{3}}{2} by \frac{-\sqrt{3}}{3} by multiplying \frac{\sqrt{2}\sqrt{3}}{2} by the reciprocal of \frac{-\sqrt{3}}{3}.
\frac{3\sqrt{2}}{-2}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{-3\sqrt{2}}{2}
Cancel out -1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}