Solve for x
x=\frac{9}{16}=0.5625
Graph
Share
Copied to clipboard
450x\times \frac{23}{90}+\frac{10}{3}\times \frac{3}{10}\times 60x+60x\left(-\frac{1}{4}\right)=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60x, the least common multiple of 3,10,4,x.
\frac{450\times 23}{90}x+\frac{10}{3}\times \frac{3}{10}\times 60x+60x\left(-\frac{1}{4}\right)=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Express 450\times \frac{23}{90} as a single fraction.
\frac{10350}{90}x+\frac{10}{3}\times \frac{3}{10}\times 60x+60x\left(-\frac{1}{4}\right)=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Multiply 450 and 23 to get 10350.
115x+\frac{10}{3}\times \frac{3}{10}\times 60x+60x\left(-\frac{1}{4}\right)=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Divide 10350 by 90 to get 115.
115x+60x+60x\left(-\frac{1}{4}\right)=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Cancel out \frac{10}{3} and its reciprocal \frac{3}{10}.
175x+60x\left(-\frac{1}{4}\right)=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Combine 115x and 60x to get 175x.
175x+\frac{60\left(-1\right)}{4}x=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Express 60\left(-\frac{1}{4}\right) as a single fraction.
175x+\frac{-60}{4}x=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Multiply 60 and -1 to get -60.
175x-15x=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Divide -60 by 4 to get -15.
160x=60\left(\frac{2}{9}-\frac{1}{54}\times 3+\frac{4}{3}\right)
Combine 175x and -15x to get 160x.
160x=60\left(\frac{2}{9}-\frac{3}{54}+\frac{4}{3}\right)
Multiply \frac{1}{54} and 3 to get \frac{3}{54}.
160x=60\left(\frac{2}{9}-\frac{1}{18}+\frac{4}{3}\right)
Reduce the fraction \frac{3}{54} to lowest terms by extracting and canceling out 3.
160x=60\left(\frac{4}{18}-\frac{1}{18}+\frac{4}{3}\right)
Least common multiple of 9 and 18 is 18. Convert \frac{2}{9} and \frac{1}{18} to fractions with denominator 18.
160x=60\left(\frac{4-1}{18}+\frac{4}{3}\right)
Since \frac{4}{18} and \frac{1}{18} have the same denominator, subtract them by subtracting their numerators.
160x=60\left(\frac{3}{18}+\frac{4}{3}\right)
Subtract 1 from 4 to get 3.
160x=60\left(\frac{1}{6}+\frac{4}{3}\right)
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
160x=60\left(\frac{1}{6}+\frac{8}{6}\right)
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{4}{3} to fractions with denominator 6.
160x=60\times \frac{1+8}{6}
Since \frac{1}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
160x=60\times \frac{9}{6}
Add 1 and 8 to get 9.
160x=60\times \frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
160x=\frac{60\times 3}{2}
Express 60\times \frac{3}{2} as a single fraction.
160x=\frac{180}{2}
Multiply 60 and 3 to get 180.
160x=90
Divide 180 by 2 to get 90.
x=\frac{90}{160}
Divide both sides by 160.
x=\frac{9}{16}
Reduce the fraction \frac{90}{160} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}