Evaluate
\frac{193}{512}=0.376953125
Factor
\frac{193}{2 ^ {9}} = 0.376953125
Share
Copied to clipboard
\left(\frac{10!}{4!\times 6!}+\frac{10!}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Divide 10! by 10! to get 1.
\left(\frac{3628800}{4!\times 6!}+\frac{10!}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 10 is 3628800.
\left(\frac{3628800}{24\times 6!}+\frac{10!}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 4 is 24.
\left(\frac{3628800}{24\times 720}+\frac{10!}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 6 is 720.
\left(\frac{3628800}{17280}+\frac{10!}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Multiply 24 and 720 to get 17280.
\left(210+\frac{10!}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Divide 3628800 by 17280 to get 210.
\left(210+\frac{3628800}{3!\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 10 is 3628800.
\left(210+\frac{3628800}{6\times 7!}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 3 is 6.
\left(210+\frac{3628800}{6\times 5040}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 7 is 5040.
\left(210+\frac{3628800}{30240}+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Multiply 6 and 5040 to get 30240.
\left(210+120+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Divide 3628800 by 30240 to get 120.
\left(330+\frac{10!}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Add 210 and 120 to get 330.
\left(330+\frac{3628800}{2!\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 10 is 3628800.
\left(330+\frac{3628800}{2\times 8!}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 2 is 2.
\left(330+\frac{3628800}{2\times 40320}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 8 is 40320.
\left(330+\frac{3628800}{80640}+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Multiply 2 and 40320 to get 80640.
\left(330+45+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Divide 3628800 by 80640 to get 45.
\left(375+\frac{10!}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
Add 330 and 45 to get 375.
\left(375+\frac{3628800}{1!\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 10 is 3628800.
\left(375+\frac{3628800}{1\times 9!}+1\right)\times \frac{1}{2^{10}}
The factorial of 1 is 1.
\left(375+\frac{3628800}{1\times 362880}+1\right)\times \frac{1}{2^{10}}
The factorial of 9 is 362880.
\left(375+\frac{3628800}{362880}+1\right)\times \frac{1}{2^{10}}
Multiply 1 and 362880 to get 362880.
\left(375+10+1\right)\times \frac{1}{2^{10}}
Divide 3628800 by 362880 to get 10.
\left(385+1\right)\times \frac{1}{2^{10}}
Add 375 and 10 to get 385.
386\times \frac{1}{2^{10}}
Add 385 and 1 to get 386.
386\times \frac{1}{1024}
Calculate 2 to the power of 10 and get 1024.
\frac{386}{1024}
Multiply 386 and \frac{1}{1024} to get \frac{386}{1024}.
\frac{193}{512}
Reduce the fraction \frac{386}{1024} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}