Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\left(\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}\right)^{2}
Multiply \frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2} and \frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2} to get \left(\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}\right)^{2}.
\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{1}{\sqrt{2}}\times \frac{1}{2}\right)^{2}
Multiply \frac{\sqrt{2}}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{1}{2}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2}\times \frac{1}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2\times 2}\right)^{2}
Multiply \frac{\sqrt{2}}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{2}\sqrt{3}+\sqrt{2}}{2\times 2}\right)^{2}
Since \frac{\sqrt{2}\sqrt{3}}{2\times 2} and \frac{\sqrt{2}}{2\times 2} have the same denominator, add them by adding their numerators.
\left(\frac{\sqrt{6}+\sqrt{2}}{2\times 2}\right)^{2}
Do the multiplications in \sqrt{2}\sqrt{3}+\sqrt{2}.
\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{\left(2\times 2\right)^{2}}
To raise \frac{\sqrt{6}+\sqrt{2}}{2\times 2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\times 2\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+\sqrt{2}\right)^{2}.
\frac{6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\times 2\right)^{2}}
The square of \sqrt{6} is 6.
\frac{6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\times 2\right)^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{\left(2\times 2\right)^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{\left(2\times 2\right)^{2}}
Multiply 2 and 2 to get 4.
\frac{6+4\sqrt{3}+2}{\left(2\times 2\right)^{2}}
The square of \sqrt{2} is 2.
\frac{8+4\sqrt{3}}{\left(2\times 2\right)^{2}}
Add 6 and 2 to get 8.
\frac{8+4\sqrt{3}}{4^{2}}
Multiply 2 and 2 to get 4.
\frac{8+4\sqrt{3}}{16}
Calculate 4 to the power of 2 and get 16.