Evaluate
\frac{21}{2}=10.5
Factor
\frac{3 \cdot 7}{2} = 10\frac{1}{2} = 10.5
Share
Copied to clipboard
4+6-\frac{2}{1-5}
The opposite of -6 is 6.
10-\frac{2}{1-5}
Add 4 and 6 to get 10.
10-\frac{2}{-4}
Subtract 5 from 1 to get -4.
10-\left(-\frac{1}{2}\right)
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
10+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{20}{2}+\frac{1}{2}
Convert 10 to fraction \frac{20}{2}.
\frac{20+1}{2}
Since \frac{20}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{21}{2}
Add 20 and 1 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}