Solve for x
x=\frac{\sqrt{39}}{21}+\frac{3}{7}\approx 0.725952286
x=-\frac{\sqrt{39}}{21}+\frac{3}{7}\approx 0.131190572
Graph
Share
Copied to clipboard
21x^{2}-18x+2=0
Multiply 7 and 3 to get 21.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 21\times 2}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -18 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 21\times 2}}{2\times 21}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-84\times 2}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-18\right)±\sqrt{324-168}}{2\times 21}
Multiply -84 times 2.
x=\frac{-\left(-18\right)±\sqrt{156}}{2\times 21}
Add 324 to -168.
x=\frac{-\left(-18\right)±2\sqrt{39}}{2\times 21}
Take the square root of 156.
x=\frac{18±2\sqrt{39}}{2\times 21}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{39}}{42}
Multiply 2 times 21.
x=\frac{2\sqrt{39}+18}{42}
Now solve the equation x=\frac{18±2\sqrt{39}}{42} when ± is plus. Add 18 to 2\sqrt{39}.
x=\frac{\sqrt{39}}{21}+\frac{3}{7}
Divide 18+2\sqrt{39} by 42.
x=\frac{18-2\sqrt{39}}{42}
Now solve the equation x=\frac{18±2\sqrt{39}}{42} when ± is minus. Subtract 2\sqrt{39} from 18.
x=-\frac{\sqrt{39}}{21}+\frac{3}{7}
Divide 18-2\sqrt{39} by 42.
x=\frac{\sqrt{39}}{21}+\frac{3}{7} x=-\frac{\sqrt{39}}{21}+\frac{3}{7}
The equation is now solved.
21x^{2}-18x+2=0
Multiply 7 and 3 to get 21.
21x^{2}-18x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{21x^{2}-18x}{21}=-\frac{2}{21}
Divide both sides by 21.
x^{2}+\left(-\frac{18}{21}\right)x=-\frac{2}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{6}{7}x=-\frac{2}{21}
Reduce the fraction \frac{-18}{21} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{6}{7}x+\left(-\frac{3}{7}\right)^{2}=-\frac{2}{21}+\left(-\frac{3}{7}\right)^{2}
Divide -\frac{6}{7}, the coefficient of the x term, by 2 to get -\frac{3}{7}. Then add the square of -\frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{7}x+\frac{9}{49}=-\frac{2}{21}+\frac{9}{49}
Square -\frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{7}x+\frac{9}{49}=\frac{13}{147}
Add -\frac{2}{21} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{7}\right)^{2}=\frac{13}{147}
Factor x^{2}-\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{7}\right)^{2}}=\sqrt{\frac{13}{147}}
Take the square root of both sides of the equation.
x-\frac{3}{7}=\frac{\sqrt{39}}{21} x-\frac{3}{7}=-\frac{\sqrt{39}}{21}
Simplify.
x=\frac{\sqrt{39}}{21}+\frac{3}{7} x=-\frac{\sqrt{39}}{21}+\frac{3}{7}
Add \frac{3}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}