Solve for x
x = \frac{\sqrt{250801} + 499}{10} \approx 99.980035942
x=\frac{499-\sqrt{250801}}{10}\approx -0.180035942
Graph
Share
Copied to clipboard
100+499x-5x^{2}=10
Use the distributive property to multiply 1+5x by 100-x and combine like terms.
100+499x-5x^{2}-10=0
Subtract 10 from both sides.
90+499x-5x^{2}=0
Subtract 10 from 100 to get 90.
-5x^{2}+499x+90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-499±\sqrt{499^{2}-4\left(-5\right)\times 90}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 499 for b, and 90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-499±\sqrt{249001-4\left(-5\right)\times 90}}{2\left(-5\right)}
Square 499.
x=\frac{-499±\sqrt{249001+20\times 90}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-499±\sqrt{249001+1800}}{2\left(-5\right)}
Multiply 20 times 90.
x=\frac{-499±\sqrt{250801}}{2\left(-5\right)}
Add 249001 to 1800.
x=\frac{-499±\sqrt{250801}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{250801}-499}{-10}
Now solve the equation x=\frac{-499±\sqrt{250801}}{-10} when ± is plus. Add -499 to \sqrt{250801}.
x=\frac{499-\sqrt{250801}}{10}
Divide -499+\sqrt{250801} by -10.
x=\frac{-\sqrt{250801}-499}{-10}
Now solve the equation x=\frac{-499±\sqrt{250801}}{-10} when ± is minus. Subtract \sqrt{250801} from -499.
x=\frac{\sqrt{250801}+499}{10}
Divide -499-\sqrt{250801} by -10.
x=\frac{499-\sqrt{250801}}{10} x=\frac{\sqrt{250801}+499}{10}
The equation is now solved.
100+499x-5x^{2}=10
Use the distributive property to multiply 1+5x by 100-x and combine like terms.
499x-5x^{2}=10-100
Subtract 100 from both sides.
499x-5x^{2}=-90
Subtract 100 from 10 to get -90.
-5x^{2}+499x=-90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+499x}{-5}=-\frac{90}{-5}
Divide both sides by -5.
x^{2}+\frac{499}{-5}x=-\frac{90}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{499}{5}x=-\frac{90}{-5}
Divide 499 by -5.
x^{2}-\frac{499}{5}x=18
Divide -90 by -5.
x^{2}-\frac{499}{5}x+\left(-\frac{499}{10}\right)^{2}=18+\left(-\frac{499}{10}\right)^{2}
Divide -\frac{499}{5}, the coefficient of the x term, by 2 to get -\frac{499}{10}. Then add the square of -\frac{499}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{499}{5}x+\frac{249001}{100}=18+\frac{249001}{100}
Square -\frac{499}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{499}{5}x+\frac{249001}{100}=\frac{250801}{100}
Add 18 to \frac{249001}{100}.
\left(x-\frac{499}{10}\right)^{2}=\frac{250801}{100}
Factor x^{2}-\frac{499}{5}x+\frac{249001}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{499}{10}\right)^{2}}=\sqrt{\frac{250801}{100}}
Take the square root of both sides of the equation.
x-\frac{499}{10}=\frac{\sqrt{250801}}{10} x-\frac{499}{10}=-\frac{\sqrt{250801}}{10}
Simplify.
x=\frac{\sqrt{250801}+499}{10} x=\frac{499-\sqrt{250801}}{10}
Add \frac{499}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}