Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

±24,±12,±8,±6,±4,±3,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -24 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=2
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+7x+12=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}+5x^{2}-2x-24 με το x-2 για να λάβετε x^{2}+7x+12. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 12}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 7 για b και 12 για c στον πολυωνυμικό τύπου.
x=\frac{-7±1}{2}
Κάντε τους υπολογισμούς.
x=-4 x=-3
Επιλύστε την εξίσωση x^{2}+7x+12=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=2 x=-4 x=-3
Λίστα όλων των λύσεων που βρέθηκαν.