Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}-5x-28=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-28\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -5 και το c με -28 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-28\right)}}{2}
Υψώστε το -5 στο τετράγωνο.
x=\frac{-\left(-5\right)±\sqrt{25+112}}{2}
Πολλαπλασιάστε το -4 επί -28.
x=\frac{-\left(-5\right)±\sqrt{137}}{2}
Προσθέστε το 25 και το 112.
x=\frac{5±\sqrt{137}}{2}
Το αντίθετο ενός αριθμού -5 είναι 5.
x=\frac{\sqrt{137}+5}{2}
Λύστε τώρα την εξίσωση x=\frac{5±\sqrt{137}}{2} όταν το ± είναι συν. Προσθέστε το 5 και το \sqrt{137}.
x=\frac{5-\sqrt{137}}{2}
Λύστε τώρα την εξίσωση x=\frac{5±\sqrt{137}}{2} όταν το ± είναι μείον. Αφαιρέστε \sqrt{137} από 5.
x=\frac{\sqrt{137}+5}{2} x=\frac{5-\sqrt{137}}{2}
Η εξίσωση έχει πλέον λυθεί.
x^{2}-5x-28=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}-5x-28-\left(-28\right)=-\left(-28\right)
Προσθέστε 28 και στις δύο πλευρές της εξίσωσης.
x^{2}-5x=-\left(-28\right)
Η αφαίρεση του -28 από τον εαυτό έχει ως αποτέλεσμα 0.
x^{2}-5x=28
Αφαιρέστε -28 από 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=28+\left(-\frac{5}{2}\right)^{2}
Διαιρέστε το -5, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-5x+\frac{25}{4}=28+\frac{25}{4}
Υψώστε το -\frac{5}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-5x+\frac{25}{4}=\frac{137}{4}
Προσθέστε το 28 και το \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{137}{4}
Παραγον x^{2}-5x+\frac{25}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{137}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{2}=\frac{\sqrt{137}}{2} x-\frac{5}{2}=-\frac{\sqrt{137}}{2}
Απλοποιήστε.
x=\frac{\sqrt{137}+5}{2} x=\frac{5-\sqrt{137}}{2}
Προσθέστε \frac{5}{2} και στις δύο πλευρές της εξίσωσης.