Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}-15x-9=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-9\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -15 και το c με -9 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-9\right)}}{2}
Υψώστε το -15 στο τετράγωνο.
x=\frac{-\left(-15\right)±\sqrt{225+36}}{2}
Πολλαπλασιάστε το -4 επί -9.
x=\frac{-\left(-15\right)±\sqrt{261}}{2}
Προσθέστε το 225 και το 36.
x=\frac{-\left(-15\right)±3\sqrt{29}}{2}
Λάβετε την τετραγωνική ρίζα του 261.
x=\frac{15±3\sqrt{29}}{2}
Το αντίθετο ενός αριθμού -15 είναι 15.
x=\frac{3\sqrt{29}+15}{2}
Λύστε τώρα την εξίσωση x=\frac{15±3\sqrt{29}}{2} όταν το ± είναι συν. Προσθέστε το 15 και το 3\sqrt{29}.
x=\frac{15-3\sqrt{29}}{2}
Λύστε τώρα την εξίσωση x=\frac{15±3\sqrt{29}}{2} όταν το ± είναι μείον. Αφαιρέστε 3\sqrt{29} από 15.
x=\frac{3\sqrt{29}+15}{2} x=\frac{15-3\sqrt{29}}{2}
Η εξίσωση έχει πλέον λυθεί.
x^{2}-15x-9=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}-15x-9-\left(-9\right)=-\left(-9\right)
Προσθέστε 9 και στις δύο πλευρές της εξίσωσης.
x^{2}-15x=-\left(-9\right)
Η αφαίρεση του -9 από τον εαυτό έχει ως αποτέλεσμα 0.
x^{2}-15x=9
Αφαιρέστε -9 από 0.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=9+\left(-\frac{15}{2}\right)^{2}
Διαιρέστε το -15, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{15}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{15}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-15x+\frac{225}{4}=9+\frac{225}{4}
Υψώστε το -\frac{15}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-15x+\frac{225}{4}=\frac{261}{4}
Προσθέστε το 9 και το \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{261}{4}
Παραγον x^{2}-15x+\frac{225}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{261}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{15}{2}=\frac{3\sqrt{29}}{2} x-\frac{15}{2}=-\frac{3\sqrt{29}}{2}
Απλοποιήστε.
x=\frac{3\sqrt{29}+15}{2} x=\frac{15-3\sqrt{29}}{2}
Προσθέστε \frac{15}{2} και στις δύο πλευρές της εξίσωσης.