Λύση ως προς y
y=\frac{5}{x^{16}}
x\neq 0
Λύση ως προς x (complex solution)
x\in \sqrt[16]{5}e^{\frac{\pi i}{8}}y^{-\frac{1}{16}},\sqrt[16]{5}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(\frac{1}{2}+\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{3\pi i}{8}}y^{-\frac{1}{16}},\sqrt[16]{5}iy^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{5\pi i}{8}}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(-\frac{1}{2}+\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{7\pi i}{8}}y^{-\frac{1}{16}},-\sqrt[16]{5}y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{9\pi i}{8}}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(-\frac{1}{2}-\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{11\pi i}{8}}y^{-\frac{1}{16}},-\sqrt[16]{5}iy^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{13\pi i}{8}}y^{-\frac{1}{16}},\sqrt{2}\sqrt[16]{5}\left(\frac{1}{2}-\frac{1}{2}i\right)y^{-\frac{1}{16}},\sqrt[16]{5}e^{\frac{15\pi i}{8}}y^{-\frac{1}{16}}
y\neq 0
Λύση ως προς x
x=\sqrt[16]{\frac{5}{y}}
x=-\sqrt[16]{\frac{5}{y}}\text{, }y>0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
yx^{16}=5
Η μεταβλητή y δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με y.
x^{16}y=5
Η εξίσωση είναι σε τυπική μορφή.
\frac{x^{16}y}{x^{16}}=\frac{5}{x^{16}}
Διαιρέστε και τις δύο πλευρές με x^{16}.
y=\frac{5}{x^{16}}
Η διαίρεση με το x^{16} αναιρεί τον πολλαπλασιασμό με το x^{16}.
y=\frac{5}{x^{16}}\text{, }y\neq 0
Η μεταβλητή y δεν μπορεί να είναι ίση με 0.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}