Λύση ως προς a
a=\frac{1+\sqrt{23}i}{2}\approx 0,5+2,397915762i
a=\frac{-\sqrt{23}i+1}{2}\approx 0,5-2,397915762i
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a^{2}+2-a=-4
Αφαιρέστε a και από τις δύο πλευρές.
a^{2}+2-a+4=0
Προσθήκη 4 και στις δύο πλευρές.
a^{2}+6-a=0
Προσθέστε 2 και 4 για να λάβετε 6.
a^{2}-a+6=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
a=\frac{-\left(-1\right)±\sqrt{1-4\times 6}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -1 και το c με 6 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-1\right)±\sqrt{1-24}}{2}
Πολλαπλασιάστε το -4 επί 6.
a=\frac{-\left(-1\right)±\sqrt{-23}}{2}
Προσθέστε το 1 και το -24.
a=\frac{-\left(-1\right)±\sqrt{23}i}{2}
Λάβετε την τετραγωνική ρίζα του -23.
a=\frac{1±\sqrt{23}i}{2}
Το αντίθετο ενός αριθμού -1 είναι 1.
a=\frac{1+\sqrt{23}i}{2}
Λύστε τώρα την εξίσωση a=\frac{1±\sqrt{23}i}{2} όταν το ± είναι συν. Προσθέστε το 1 και το i\sqrt{23}.
a=\frac{-\sqrt{23}i+1}{2}
Λύστε τώρα την εξίσωση a=\frac{1±\sqrt{23}i}{2} όταν το ± είναι μείον. Αφαιρέστε i\sqrt{23} από 1.
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
Η εξίσωση έχει πλέον λυθεί.
a^{2}+2-a=-4
Αφαιρέστε a και από τις δύο πλευρές.
a^{2}-a=-4-2
Αφαιρέστε 2 και από τις δύο πλευρές.
a^{2}-a=-6
Αφαιρέστε 2 από -4 για να λάβετε -6.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
Διαιρέστε το -1, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
a^{2}-a+\frac{1}{4}=-6+\frac{1}{4}
Υψώστε το -\frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
a^{2}-a+\frac{1}{4}=-\frac{23}{4}
Προσθέστε το -6 και το \frac{1}{4}.
\left(a-\frac{1}{2}\right)^{2}=-\frac{23}{4}
Παραγον a^{2}-a+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
a-\frac{1}{2}=\frac{\sqrt{23}i}{2} a-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
Απλοποιήστε.
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
Προσθέστε \frac{1}{2} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}