Λύση ως προς B
B=-\frac{2x}{x^{5}-x^{3}+x^{2}+2x-1}
x\neq 0\text{ and }x\left(x^{4}-x^{2}+x+2\right)\neq 1\text{ and }x^{5}-x^{3}+x^{2}+2x-1\neq 0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
Bx^{5}+Bx^{2}+Bx+2x=Bx^{3}-xB+B
Η μεταβλητή B δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με B.
Bx^{5}+Bx^{2}+Bx+2x-Bx^{3}=-xB+B
Αφαιρέστε Bx^{3} και από τις δύο πλευρές.
Bx^{5}+Bx^{2}+Bx+2x-Bx^{3}+xB=B
Προσθήκη xB και στις δύο πλευρές.
Bx^{5}+Bx^{2}+Bx+2x-Bx^{3}+xB-B=0
Αφαιρέστε B και από τις δύο πλευρές.
Bx^{5}+Bx^{2}+2Bx+2x-Bx^{3}-B=0
Συνδυάστε το Bx και το xB για να λάβετε 2Bx.
Bx^{5}+Bx^{2}+2Bx-Bx^{3}-B=-2x
Αφαιρέστε 2x και από τις δύο πλευρές. Το υπόλοιπο της αφαίρεσης οποιουδήποτε αριθμού από το μηδέν ισούται με τον αντίστοιχο αρνητικό αριθμό.
\left(x^{5}+x^{2}+2x-x^{3}-1\right)B=-2x
Συνδυάστε όλους τους όρους που περιέχουν B.
\left(x^{5}-x^{3}+x^{2}+2x-1\right)B=-2x
Η εξίσωση είναι σε τυπική μορφή.
\frac{\left(x^{5}-x^{3}+x^{2}+2x-1\right)B}{x^{5}-x^{3}+x^{2}+2x-1}=-\frac{2x}{x^{5}-x^{3}+x^{2}+2x-1}
Διαιρέστε και τις δύο πλευρές με x^{2}+x^{5}-1+2x-x^{3}.
B=-\frac{2x}{x^{5}-x^{3}+x^{2}+2x-1}
Η διαίρεση με το x^{2}+x^{5}-1+2x-x^{3} αναιρεί τον πολλαπλασιασμό με το x^{2}+x^{5}-1+2x-x^{3}.
B=-\frac{2x}{x^{5}-x^{3}+x^{2}+2x-1}\text{, }B\neq 0
Η μεταβλητή B δεν μπορεί να είναι ίση με 0.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}