Λύση ως προς x
x=\frac{\sqrt{6}}{20}\approx 0,122474487
x=-\frac{\sqrt{6}}{20}\approx -0,122474487
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(4000+4000x\right)\left(1-x\right)=3940
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 4000 με το 1+x.
4000-4000x^{2}=3940
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 4000+4000x με το 1-x και συνδυάστε τους παρόμοιους όρους.
-4000x^{2}=3940-4000
Αφαιρέστε 4000 και από τις δύο πλευρές.
-4000x^{2}=-60
Αφαιρέστε 4000 από 3940 για να λάβετε -60.
x^{2}=\frac{-60}{-4000}
Διαιρέστε και τις δύο πλευρές με -4000.
x^{2}=\frac{3}{200}
Μειώστε το κλάσμα \frac{-60}{-4000} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του -20.
x=\frac{\sqrt{6}}{20} x=-\frac{\sqrt{6}}{20}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
\left(4000+4000x\right)\left(1-x\right)=3940
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 4000 με το 1+x.
4000-4000x^{2}=3940
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 4000+4000x με το 1-x και συνδυάστε τους παρόμοιους όρους.
4000-4000x^{2}-3940=0
Αφαιρέστε 3940 και από τις δύο πλευρές.
60-4000x^{2}=0
Αφαιρέστε 3940 από 4000 για να λάβετε 60.
-4000x^{2}+60=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή, με έναν όρο x^{2} αλλά χωρίς όρο x, εξακολουθούν να μπορούν να λυθούν μέσω του τετραγωνικού τύπου, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, από τη στιγμή που τίθενται στην τυπική μορφή: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4000\right)\times 60}}{2\left(-4000\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -4000, το b με 0 και το c με 60 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4000\right)\times 60}}{2\left(-4000\right)}
Υψώστε το 0 στο τετράγωνο.
x=\frac{0±\sqrt{16000\times 60}}{2\left(-4000\right)}
Πολλαπλασιάστε το -4 επί -4000.
x=\frac{0±\sqrt{960000}}{2\left(-4000\right)}
Πολλαπλασιάστε το 16000 επί 60.
x=\frac{0±400\sqrt{6}}{2\left(-4000\right)}
Λάβετε την τετραγωνική ρίζα του 960000.
x=\frac{0±400\sqrt{6}}{-8000}
Πολλαπλασιάστε το 2 επί -4000.
x=-\frac{\sqrt{6}}{20}
Λύστε τώρα την εξίσωση x=\frac{0±400\sqrt{6}}{-8000} όταν το ± είναι συν.
x=\frac{\sqrt{6}}{20}
Λύστε τώρα την εξίσωση x=\frac{0±400\sqrt{6}}{-8000} όταν το ± είναι μείον.
x=-\frac{\sqrt{6}}{20} x=\frac{\sqrt{6}}{20}
Η εξίσωση έχει πλέον λυθεί.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}