Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς y
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

y^{3}=\frac{81}{3}
Διαιρέστε και τις δύο πλευρές με 3.
y^{3}=27
Διαιρέστε το 81 με το 3 για να λάβετε 27.
y^{3}-27=0
Αφαιρέστε 27 και από τις δύο πλευρές.
±27,±9,±3,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -27 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
y=3
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
y^{2}+3y+9=0
Κατά παράγοντα θεώρημα, y-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το y^{3}-27 με το y-3 για να λάβετε y^{2}+3y+9. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
y=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 3 για b και 9 για c στον πολυωνυμικό τύπου.
y=\frac{-3±\sqrt{-27}}{2}
Κάντε τους υπολογισμούς.
y\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
y=3
Λίστα όλων των λύσεων που βρέθηκαν.