Λύση ως προς x
x = \frac{\sqrt{79} + 9}{2} \approx 8,944097209
x=\frac{9-\sqrt{79}}{2}\approx 0,055902791
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2x^{2}-18x=-1
Αφαιρέστε 18x και από τις δύο πλευρές.
2x^{2}-18x+1=0
Προσθήκη 1 και στις δύο πλευρές.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2}}{2\times 2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 2, το b με -18 και το c με 1 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2}}{2\times 2}
Υψώστε το -18 στο τετράγωνο.
x=\frac{-\left(-18\right)±\sqrt{324-8}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-18\right)±\sqrt{316}}{2\times 2}
Προσθέστε το 324 και το -8.
x=\frac{-\left(-18\right)±2\sqrt{79}}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 316.
x=\frac{18±2\sqrt{79}}{2\times 2}
Το αντίθετο ενός αριθμού -18 είναι 18.
x=\frac{18±2\sqrt{79}}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{2\sqrt{79}+18}{4}
Λύστε τώρα την εξίσωση x=\frac{18±2\sqrt{79}}{4} όταν το ± είναι συν. Προσθέστε το 18 και το 2\sqrt{79}.
x=\frac{\sqrt{79}+9}{2}
Διαιρέστε το 18+2\sqrt{79} με το 4.
x=\frac{18-2\sqrt{79}}{4}
Λύστε τώρα την εξίσωση x=\frac{18±2\sqrt{79}}{4} όταν το ± είναι μείον. Αφαιρέστε 2\sqrt{79} από 18.
x=\frac{9-\sqrt{79}}{2}
Διαιρέστε το 18-2\sqrt{79} με το 4.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
Η εξίσωση έχει πλέον λυθεί.
2x^{2}-18x=-1
Αφαιρέστε 18x και από τις δύο πλευρές.
\frac{2x^{2}-18x}{2}=-\frac{1}{2}
Διαιρέστε και τις δύο πλευρές με 2.
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{1}{2}
Η διαίρεση με το 2 αναιρεί τον πολλαπλασιασμό με το 2.
x^{2}-9x=-\frac{1}{2}
Διαιρέστε το -18 με το 2.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{2}\right)^{2}
Διαιρέστε το -9, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{9}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{9}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-9x+\frac{81}{4}=-\frac{1}{2}+\frac{81}{4}
Υψώστε το -\frac{9}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-9x+\frac{81}{4}=\frac{79}{4}
Προσθέστε το -\frac{1}{2} και το \frac{81}{4} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{9}{2}\right)^{2}=\frac{79}{4}
Παραγον x^{2}-9x+\frac{81}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{79}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{9}{2}=\frac{\sqrt{79}}{2} x-\frac{9}{2}=-\frac{\sqrt{79}}{2}
Απλοποιήστε.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
Προσθέστε \frac{9}{2} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}