Υπολογισμός
\frac{12x^{3}-24x^{2}-1}{x-2}
Διαφόριση ως προς x
\frac{24x^{3}-96x^{2}+96x+1}{\left(x-2\right)^{2}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 12x^{2} επί \frac{x-2}{x-2}.
\frac{12x^{2}\left(x-2\right)-1}{x-2}
Από τη στιγμή που οι αριθμοί \frac{12x^{2}\left(x-2\right)}{x-2} και \frac{1}{x-2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{12x^{3}-24x^{2}-1}{x-2}
Κάντε τους πολλαπλασιασμούς στο 12x^{2}\left(x-2\right)-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 12x^{2} επί \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)-1}{x-2})
Από τη στιγμή που οι αριθμοί \frac{12x^{2}\left(x-2\right)}{x-2} και \frac{1}{x-2} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{3}-24x^{2}-1}{x-2})
Κάντε τους πολλαπλασιασμούς στο 12x^{2}\left(x-2\right)-1.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(12x^{3}-24x^{2}-1)-\left(12x^{3}-24x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{1}-2\right)\left(3\times 12x^{3-1}+2\left(-24\right)x^{2-1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{1-1}}{\left(x^{1}-2\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{1}-2\right)\left(36x^{2}-48x^{1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Απλοποιήστε.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Πολλαπλασιάστε το x^{1}-2 επί 36x^{2}-48x^{1}.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}x^{0}-24x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Πολλαπλασιάστε το 12x^{3}-24x^{2}-1 επί x^{0}.
\frac{36x^{1+2}-48x^{1+1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{36x^{3}-48x^{2}-72x^{2}+96x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Απλοποιήστε.
\frac{24x^{3}-24x^{2}-72x^{2}+96x^{1}-\left(-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-x^{0}\right)}{\left(x-2\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-1\right)}{\left(x-2\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}