Υπολογισμός
-\frac{4xy}{15}
Ανάπτυξη
-\frac{4xy}{15}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-\frac{1}{5}y\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Για να βρείτε τον αντίθετο του \frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}, βρείτε τον αντίθετο κάθε όρου.
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το \frac{1}{25}y^{2} και το -\frac{64}{225}y^{2} για να λάβετε -\frac{11}{45}y^{2}.
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{2}{5}xy και το -\frac{88}{15}yx για να λάβετε -\frac{94}{15}xy.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το x^{2} και το -\frac{121}{4}x^{2} για να λάβετε -\frac{117}{4}x^{2}.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}.
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{117}{4}x^{2} και το \frac{81}{4}x^{2} για να λάβετε -9x^{2}.
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{94}{15}xy και το 6xy για να λάβετε -\frac{4}{15}xy.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{11}{45}y^{2} και το \frac{4}{9}y^{2} για να λάβετε \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Υπολογίστε \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right). Ο πολλαπλασιασμός μπορεί να μετατραπεί σε διαφορά τετραγώνων χρησιμοποιώντας τον κανόνα: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Αναπτύξτε το \left(\frac{1}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Υπολογίστε το \frac{1}{5}στη δύναμη του 2 και λάβετε \frac{1}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Αναπτύξτε το \left(3x\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Υπολογίστε το 3στη δύναμη του 2 και λάβετε 9.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Αναπτύξτε το \left(-\frac{2}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Υπολογίστε το -\frac{2}{5}στη δύναμη του 2 και λάβετε \frac{4}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Συνδυάστε το \frac{1}{25}y^{2} και το \frac{4}{25}y^{2} για να λάβετε \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
Για να βρείτε τον αντίθετο του \frac{1}{5}y^{2}-9x^{2}, βρείτε τον αντίθετο κάθε όρου.
-9x^{2}-\frac{4}{15}xy+9x^{2}
Συνδυάστε το \frac{1}{5}y^{2} και το -\frac{1}{5}y^{2} για να λάβετε 0.
-\frac{4}{15}xy
Συνδυάστε το -9x^{2} και το 9x^{2} για να λάβετε 0.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{2}=a^{2}-2ab+b^{2} για να αναπτύξετε το \left(x-\frac{1}{5}y\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Για να βρείτε τον αντίθετο του \frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}, βρείτε τον αντίθετο κάθε όρου.
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το \frac{1}{25}y^{2} και το -\frac{64}{225}y^{2} για να λάβετε -\frac{11}{45}y^{2}.
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{2}{5}xy και το -\frac{88}{15}yx για να λάβετε -\frac{94}{15}xy.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το x^{2} και το -\frac{121}{4}x^{2} για να λάβετε -\frac{117}{4}x^{2}.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a+b\right)^{2}=a^{2}+2ab+b^{2} για να αναπτύξετε το \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}.
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{117}{4}x^{2} και το \frac{81}{4}x^{2} για να λάβετε -9x^{2}.
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{94}{15}xy και το 6xy για να λάβετε -\frac{4}{15}xy.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Συνδυάστε το -\frac{11}{45}y^{2} και το \frac{4}{9}y^{2} για να λάβετε \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Υπολογίστε \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right). Ο πολλαπλασιασμός μπορεί να μετατραπεί σε διαφορά τετραγώνων χρησιμοποιώντας τον κανόνα: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Αναπτύξτε το \left(\frac{1}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Υπολογίστε το \frac{1}{5}στη δύναμη του 2 και λάβετε \frac{1}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Αναπτύξτε το \left(3x\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Υπολογίστε το 3στη δύναμη του 2 και λάβετε 9.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Αναπτύξτε το \left(-\frac{2}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Υπολογίστε το -\frac{2}{5}στη δύναμη του 2 και λάβετε \frac{4}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Συνδυάστε το \frac{1}{25}y^{2} και το \frac{4}{25}y^{2} για να λάβετε \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
Για να βρείτε τον αντίθετο του \frac{1}{5}y^{2}-9x^{2}, βρείτε τον αντίθετο κάθε όρου.
-9x^{2}-\frac{4}{15}xy+9x^{2}
Συνδυάστε το \frac{1}{5}y^{2} και το -\frac{1}{5}y^{2} για να λάβετε 0.
-\frac{4}{15}xy
Συνδυάστε το -9x^{2} και το 9x^{2} για να λάβετε 0.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}