Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{4}+6x^{3}+11x^{2}+6x-8=16
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x^{2}+3x-2 με το x^{2}+3x+4 και συνδυάστε τους παρόμοιους όρους.
x^{4}+6x^{3}+11x^{2}+6x-8-16=0
Αφαιρέστε 16 και από τις δύο πλευρές.
x^{4}+6x^{3}+11x^{2}+6x-24=0
Αφαιρέστε 16 από -8 για να λάβετε -24.
±24,±12,±8,±6,±4,±3,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -24 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=1
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{3}+7x^{2}+18x+24=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{4}+6x^{3}+11x^{2}+6x-24 με το x-1 για να λάβετε x^{3}+7x^{2}+18x+24. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
±24,±12,±8,±6,±4,±3,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 24 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-4
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+3x+6=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}+7x^{2}+18x+24 με το x+4 για να λάβετε x^{2}+3x+6. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 6}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 3 για b και 6 για c στον πολυωνυμικό τύπου.
x=\frac{-3±\sqrt{-15}}{2}
Κάντε τους υπολογισμούς.
x=\frac{-\sqrt{15}i-3}{2} x=\frac{-3+\sqrt{15}i}{2}
Επιλύστε την εξίσωση x^{2}+3x+6=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=1 x=-4 x=\frac{-\sqrt{15}i-3}{2} x=\frac{-3+\sqrt{15}i}{2}
Λίστα όλων των λύσεων που βρέθηκαν.
x^{4}+6x^{3}+11x^{2}+6x-8=16
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x^{2}+3x-2 με το x^{2}+3x+4 και συνδυάστε τους παρόμοιους όρους.
x^{4}+6x^{3}+11x^{2}+6x-8-16=0
Αφαιρέστε 16 και από τις δύο πλευρές.
x^{4}+6x^{3}+11x^{2}+6x-24=0
Αφαιρέστε 16 από -8 για να λάβετε -24.
±24,±12,±8,±6,±4,±3,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -24 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=1
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{3}+7x^{2}+18x+24=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{4}+6x^{3}+11x^{2}+6x-24 με το x-1 για να λάβετε x^{3}+7x^{2}+18x+24. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
±24,±12,±8,±6,±4,±3,±2,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 24 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=-4
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+3x+6=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}+7x^{2}+18x+24 με το x+4 για να λάβετε x^{2}+3x+6. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 6}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 3 για b και 6 για c στον πολυωνυμικό τύπου.
x=\frac{-3±\sqrt{-15}}{2}
Κάντε τους υπολογισμούς.
x\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
x=1 x=-4
Λίστα όλων των λύσεων που βρέθηκαν.