Λύση ως προς x
x = \frac{\sqrt{33} + 5}{4} \approx 2,686140662
x=\frac{5-\sqrt{33}}{4}\approx -0,186140662
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}-\frac{5}{2}x-\frac{1}{2}=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -\frac{5}{2} και το c με -\frac{1}{2} στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\left(-\frac{1}{2}\right)}}{2}
Υψώστε το -\frac{5}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}+2}}{2}
Πολλαπλασιάστε το -4 επί -\frac{1}{2}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{33}{4}}}{2}
Προσθέστε το \frac{25}{4} και το 2.
x=\frac{-\left(-\frac{5}{2}\right)±\frac{\sqrt{33}}{2}}{2}
Λάβετε την τετραγωνική ρίζα του \frac{33}{4}.
x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2}
Το αντίθετο ενός αριθμού -\frac{5}{2} είναι \frac{5}{2}.
x=\frac{\sqrt{33}+5}{2\times 2}
Λύστε τώρα την εξίσωση x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2} όταν το ± είναι συν. Προσθέστε το \frac{5}{2} και το \frac{\sqrt{33}}{2}.
x=\frac{\sqrt{33}+5}{4}
Διαιρέστε το \frac{5+\sqrt{33}}{2} με το 2.
x=\frac{5-\sqrt{33}}{2\times 2}
Λύστε τώρα την εξίσωση x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2} όταν το ± είναι μείον. Αφαιρέστε \frac{\sqrt{33}}{2} από \frac{5}{2}.
x=\frac{5-\sqrt{33}}{4}
Διαιρέστε το \frac{5-\sqrt{33}}{2} με το 2.
x=\frac{\sqrt{33}+5}{4} x=\frac{5-\sqrt{33}}{4}
Η εξίσωση έχει πλέον λυθεί.
x^{2}-\frac{5}{2}x-\frac{1}{2}=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}-\frac{5}{2}x-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
Προσθέστε \frac{1}{2} και στις δύο πλευρές της εξίσωσης.
x^{2}-\frac{5}{2}x=-\left(-\frac{1}{2}\right)
Η αφαίρεση του -\frac{1}{2} από τον εαυτό έχει ως αποτέλεσμα 0.
x^{2}-\frac{5}{2}x=\frac{1}{2}
Αφαιρέστε -\frac{1}{2} από 0.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{5}{4}\right)^{2}
Διαιρέστε το -\frac{5}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{5}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{5}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{2}+\frac{25}{16}
Υψώστε το -\frac{5}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{33}{16}
Προσθέστε το \frac{1}{2} και το \frac{25}{16} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{5}{4}\right)^{2}=\frac{33}{16}
Παραγον x^{2}-\frac{5}{2}x+\frac{25}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{5}{4}=\frac{\sqrt{33}}{4} x-\frac{5}{4}=-\frac{\sqrt{33}}{4}
Απλοποιήστε.
x=\frac{\sqrt{33}+5}{4} x=\frac{5-\sqrt{33}}{4}
Προσθέστε \frac{5}{4} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}