Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\int 4\left(125-150x+60x^{2}-8x^{3}\right)\mathrm{d}x
Χρησιμοποιήστε το διωνυμικό θεώρημα \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} για να αναπτύξετε το \left(5-2x\right)^{3}.
\int 500-600x+240x^{2}-32x^{3}\mathrm{d}x
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 4 με το 125-150x+60x^{2}-8x^{3}.
\int 500\mathrm{d}x+\int -600x\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int -32x^{3}\mathrm{d}x
Ενσωματώστε τον όρο άθροιση ανά όρο.
\int 500\mathrm{d}x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
Παραγοντοποιήστε τη σταθερά σε κάθε όρο.
500x-600\int x\mathrm{d}x+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
Βρείτε το ολοκλήρωμα των 500 χρησιμοποιώντας τον πίνακα με τον κοινό ολοκληρώματα κανόνα \int a\mathrm{d}x=ax.
500x-300x^{2}+240\int x^{2}\mathrm{d}x-32\int x^{3}\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x\mathrm{d}x με \frac{x^{2}}{2}. Πολλαπλασιάστε το -600 επί \frac{x^{2}}{2}.
500x-300x^{2}+80x^{3}-32\int x^{3}\mathrm{d}x
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{2}\mathrm{d}x με \frac{x^{3}}{3}. Πολλαπλασιάστε το 240 επί \frac{x^{3}}{3}.
500x-300x^{2}+80x^{3}-8x^{4}
Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{3}\mathrm{d}x με \frac{x^{4}}{4}. Πολλαπλασιάστε το -32 επί \frac{x^{4}}{4}.
500x-300x^{2}+80x^{3}-8x^{4}+С
Εάν η F\left(x\right) είναι αντιπαράγωγος του f\left(x\right), τότε δίνεται το σύνολο όλων των antiderivatives του f\left(x\right) από το F\left(x\right)+C. Επομένως, προσθέστε τη σταθερά της ενοποίησης C\in \mathrm{R} στο αποτέλεσμα.