Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\sqrt{6}\int \sqrt{x}\mathrm{d}x
Παραγοντοποιήστε τη σταθερά με \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{6}\times \frac{2x^{\frac{3}{2}}}{3}
Γράψτε πάλι το \sqrt{x} ως x^{\frac{1}{2}}. Καθώς \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} για k\neq -1, αντικαταστήστε \int x^{\frac{1}{2}}\mathrm{d}x με \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Απλοποιήστε.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}
Απλοποιήστε.
\frac{2\sqrt{6}x^{\frac{3}{2}}}{3}+С
Εάν η F\left(x\right) είναι αντιπαράγωγος του f\left(x\right), τότε δίνεται το σύνολο όλων των antiderivatives του f\left(x\right) από το F\left(x\right)+C. Επομένως, προσθέστε τη σταθερά της ενοποίησης C\in \mathrm{R} στο αποτέλεσμα.