Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{2}-2\right)\times 2}{x-5})
Έκφραση του \frac{3x^{2}-2}{x-5}\times 2 ως ενιαίου κλάσματος.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{2}-4}{x-5})
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 3x^{2}-2 με το 2.
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{2}-4)-\left(6x^{2}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{1}-5\right)\times 2\times 6x^{2-1}-\left(6x^{2}-4\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 12x^{1}-\left(6x^{2}-4\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{x^{1}\times 12x^{1}-5\times 12x^{1}-\left(6x^{2}x^{0}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Αναπτύξτε χρησιμοποιώντας την επιμεριστική ιδιότητα.
\frac{12x^{1+1}-5\times 12x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{12x^{2}-60x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Κάντε την αριθμητική πράξη.
\frac{12x^{2}-60x^{1}-6x^{2}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Καταργήστε τις περιττές παρενθέσεις.
\frac{\left(12-6\right)x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{6x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Αφαιρέστε 6 από 12.
\frac{6x^{2}-60x-\left(-4x^{0}\right)}{\left(x-5\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{6x^{2}-60x-\left(-4\right)}{\left(x-5\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.