Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς v
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{v}{\left(v+8\right)\left(v+9\right)}-\frac{8}{\left(v+7\right)\left(v+8\right)}
Παραγοντοποιήστε με το v^{2}+17v+72. Παραγοντοποιήστε με το v^{2}+15v+56.
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}-\frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(v+8\right)\left(v+9\right) και \left(v+7\right)\left(v+8\right) είναι \left(v+7\right)\left(v+8\right)\left(v+9\right). Πολλαπλασιάστε το \frac{v}{\left(v+8\right)\left(v+9\right)} επί \frac{v+7}{v+7}. Πολλαπλασιάστε το \frac{8}{\left(v+7\right)\left(v+8\right)} επί \frac{v+9}{v+9}.
\frac{v\left(v+7\right)-8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
Από τη στιγμή που οι αριθμοί \frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} και \frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{v^{2}+7v-8v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
Κάντε τους πολλαπλασιασμούς στο v\left(v+7\right)-8\left(v+9\right).
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
Συνδυάστε παρόμοιους όρους στο v^{2}+7v-8v-72.
\frac{\left(v-9\right)\left(v+8\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}.
\frac{v-9}{\left(v+7\right)\left(v+9\right)}
Απαλείψτε το v+8 στον αριθμητή και παρονομαστή.
\frac{v-9}{v^{2}+16v+63}
Αναπτύξτε το \left(v+7\right)\left(v+9\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v}{\left(v+8\right)\left(v+9\right)}-\frac{8}{\left(v+7\right)\left(v+8\right)})
Παραγοντοποιήστε με το v^{2}+17v+72. Παραγοντοποιήστε με το v^{2}+15v+56.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}-\frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(v+8\right)\left(v+9\right) και \left(v+7\right)\left(v+8\right) είναι \left(v+7\right)\left(v+8\right)\left(v+9\right). Πολλαπλασιάστε το \frac{v}{\left(v+8\right)\left(v+9\right)} επί \frac{v+7}{v+7}. Πολλαπλασιάστε το \frac{8}{\left(v+7\right)\left(v+8\right)} επί \frac{v+9}{v+9}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v+7\right)-8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
Από τη στιγμή που οι αριθμοί \frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} και \frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+7v-8v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
Κάντε τους πολλαπλασιασμούς στο v\left(v+7\right)-8\left(v+9\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
Συνδυάστε παρόμοιους όρους στο v^{2}+7v-8v-72.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-9\right)\left(v+8\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v-9}{\left(v+7\right)\left(v+9\right)})
Απαλείψτε το v+8 στον αριθμητή και παρονομαστή.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v-9}{v^{2}+16v+63})
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το v+7 με το v+9 και συνδυάστε τους παρόμοιους όρους.
\frac{\left(v^{2}+16v^{1}+63\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}-9)-\left(v^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{2}+16v^{1}+63)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(v^{2}+16v^{1}+63\right)v^{1-1}-\left(v^{1}-9\right)\left(2v^{2-1}+16v^{1-1}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(v^{2}+16v^{1}+63\right)v^{0}-\left(v^{1}-9\right)\left(2v^{1}+16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Απλοποιήστε.
\frac{v^{2}v^{0}+16v^{1}v^{0}+63v^{0}-\left(v^{1}-9\right)\left(2v^{1}+16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Πολλαπλασιάστε το v^{2}+16v^{1}+63 επί v^{0}.
\frac{v^{2}v^{0}+16v^{1}v^{0}+63v^{0}-\left(v^{1}\times 2v^{1}+v^{1}\times 16v^{0}-9\times 2v^{1}-9\times 16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Πολλαπλασιάστε το v^{1}-9 επί 2v^{1}+16v^{0}.
\frac{v^{2}+16v^{1}+63v^{0}-\left(2v^{1+1}+16v^{1}-9\times 2v^{1}-9\times 16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{v^{2}+16v^{1}+63v^{0}-\left(2v^{2}+16v^{1}-18v^{1}-144v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Απλοποιήστε.
\frac{-v^{2}+18v^{1}+207v^{0}}{\left(v^{2}+16v^{1}+63\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-v^{2}+18v+207v^{0}}{\left(v^{2}+16v+63\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{-v^{2}+18v+207\times 1}{\left(v^{2}+16v+63\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
\frac{-v^{2}+18v+207}{\left(v^{2}+16v+63\right)^{2}}
Για κάθε όρο t, t\times 1=t και 1t=t.