Λύση ως προς l
l=r\left(e\cos(\theta )+1\right)
r\neq 0
Λύση ως προς r
\left\{\begin{matrix}r=\frac{l}{e\cos(\theta )+1}\text{, }&l\neq 0\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }\theta =2\pi n_{2}+\arccos(\frac{1}{e})+\pi \text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}-\arccos(\frac{1}{e})+\pi \\r\neq 0\text{, }&\left(\exists n_{4}\in \mathrm{Z}\text{ : }\theta =2\pi n_{4}+\arccos(\frac{1}{e})+\pi \text{ or }\exists n_{3}\in \mathrm{Z}\text{ : }\theta =2\pi n_{3}-\arccos(\frac{1}{e})+\pi \right)\text{ and }l=0\end{matrix}\right,
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{1}{r}l=e\cos(\theta )+1
Η εξίσωση είναι σε τυπική μορφή.
\frac{\frac{1}{r}lr}{1}=\frac{\left(e\cos(\theta )+1\right)r}{1}
Διαιρέστε και τις δύο πλευρές με r^{-1}.
l=\frac{\left(e\cos(\theta )+1\right)r}{1}
Η διαίρεση με το r^{-1} αναιρεί τον πολλαπλασιασμό με το r^{-1}.
l=r\left(e\cos(\theta )+1\right)
Διαιρέστε το 1+e\cos(\theta ) με το r^{-1}.
l=r+e\cos(\theta )r
Η μεταβλητή r δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με r.
r+e\cos(\theta )r=l
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\left(1+e\cos(\theta )\right)r=l
Συνδυάστε όλους τους όρους που περιέχουν r.
\left(e\cos(\theta )+1\right)r=l
Η εξίσωση είναι σε τυπική μορφή.
\frac{\left(e\cos(\theta )+1\right)r}{e\cos(\theta )+1}=\frac{l}{e\cos(\theta )+1}
Διαιρέστε και τις δύο πλευρές με 1+e\cos(\theta ).
r=\frac{l}{e\cos(\theta )+1}
Η διαίρεση με το 1+e\cos(\theta ) αναιρεί τον πολλαπλασιασμό με το 1+e\cos(\theta ).
r=\frac{l}{e\cos(\theta )+1}\text{, }r\neq 0
Η μεταβλητή r δεν μπορεί να είναι ίση με 0.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}