Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{ax}{\left(x+2\right)\left(2x-1\right)}
Πολλαπλασιάστε το \frac{a}{x+2} επί \frac{x}{2x-1} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{ax}{2x^{2}-x+4x-2}
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του x+2 με κάθε όρο του 2x-1.
\frac{ax}{2x^{2}+3x-2}
Συνδυάστε το -x και το 4x για να λάβετε 3x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{\left(x+2\right)\left(2x-1\right)})
Πολλαπλασιάστε το \frac{a}{x+2} επί \frac{x}{2x-1} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{2x^{2}-x+4x-2})
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του x+2 με κάθε όρο του 2x-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{ax}{2x^{2}+3x-2})
Συνδυάστε το -x και το 4x για να λάβετε 3x.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(ax^{1})-ax^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(2x^{2}+3x^{1}-2\right)ax^{1-1}-ax^{1}\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(2x^{2}+3x^{1}-2\right)ax^{0}-ax^{1}\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Απλοποιήστε.
\frac{2x^{2}ax^{0}+3x^{1}ax^{0}-2ax^{0}-ax^{1}\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Πολλαπλασιάστε το 2x^{2}+3x^{1}-2 επί ax^{0}.
\frac{2x^{2}ax^{0}+3x^{1}ax^{0}-2ax^{0}-\left(ax^{1}\times 4x^{1}+ax^{1}\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Πολλαπλασιάστε το ax^{1} επί 4x^{1}+3x^{0}.
\frac{2ax^{2}+3ax^{1}-2ax^{0}-\left(a\times 4x^{1+1}+a\times 3x^{1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{2ax^{2}+3ax^{1}+\left(-2a\right)x^{0}-\left(4ax^{2}+3ax^{1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Απλοποιήστε.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{\left(-2a\right)x^{2}+\left(-2a\right)\times 1}{\left(2x^{2}+3x-2\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
\frac{\left(-2a\right)x^{2}-2a}{\left(2x^{2}+3x-2\right)^{2}}
Για κάθε όρο t, t\times 1=t και 1t=t.