Υπολογισμός
\frac{p^{2}+10p+14}{p^{2}-36}
Ανάπτυξη
\frac{p^{2}+10p+14}{p^{2}-36}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{p+3}{p-6}
Παραγοντοποιήστε με το 36-p^{2}.
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(p-6\right)\left(-p-6\right) και p-6 είναι \left(p-6\right)\left(-p-6\right). Πολλαπλασιάστε το \frac{p+3}{p-6} επί \frac{-p-6}{-p-6}.
\frac{4-p+\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Από τη στιγμή που οι αριθμοί \frac{4-p}{\left(p-6\right)\left(-p-6\right)} και \frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{4-p-p^{2}-6p-3p-18}{\left(p-6\right)\left(-p-6\right)}
Κάντε τους πολλαπλασιασμούς στο 4-p+\left(p+3\right)\left(-p-6\right).
\frac{-14-10p-p^{2}}{\left(p-6\right)\left(-p-6\right)}
Συνδυάστε παρόμοιους όρους στο 4-p-p^{2}-6p-3p-18.
\frac{-14-10p-p^{2}}{-p^{2}+36}
Αναπτύξτε το \left(p-6\right)\left(-p-6\right).
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{p+3}{p-6}
Παραγοντοποιήστε με το 36-p^{2}.
\frac{4-p}{\left(p-6\right)\left(-p-6\right)}+\frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(p-6\right)\left(-p-6\right) και p-6 είναι \left(p-6\right)\left(-p-6\right). Πολλαπλασιάστε το \frac{p+3}{p-6} επί \frac{-p-6}{-p-6}.
\frac{4-p+\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)}
Από τη στιγμή που οι αριθμοί \frac{4-p}{\left(p-6\right)\left(-p-6\right)} και \frac{\left(p+3\right)\left(-p-6\right)}{\left(p-6\right)\left(-p-6\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{4-p-p^{2}-6p-3p-18}{\left(p-6\right)\left(-p-6\right)}
Κάντε τους πολλαπλασιασμούς στο 4-p+\left(p+3\right)\left(-p-6\right).
\frac{-14-10p-p^{2}}{\left(p-6\right)\left(-p-6\right)}
Συνδυάστε παρόμοιους όρους στο 4-p-p^{2}-6p-3p-18.
\frac{-14-10p-p^{2}}{-p^{2}+36}
Αναπτύξτε το \left(p-6\right)\left(-p-6\right).
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}