Λύση ως προς x
x=1
x=7
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
10+\left(x-5\right)x=\left(x+1\right)\times 3
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -1,5 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το \left(x-5\right)\left(x+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των \left(x-5\right)\left(x+1\right),x+1,x-5.
10+x^{2}-5x=\left(x+1\right)\times 3
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-5 με το x.
10+x^{2}-5x=3x+3
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το 3.
10+x^{2}-5x-3x=3
Αφαιρέστε 3x και από τις δύο πλευρές.
10+x^{2}-8x=3
Συνδυάστε το -5x και το -3x για να λάβετε -8x.
10+x^{2}-8x-3=0
Αφαιρέστε 3 και από τις δύο πλευρές.
7+x^{2}-8x=0
Αφαιρέστε 3 από 10 για να λάβετε 7.
x^{2}-8x+7=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -8 και το c με 7 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Υψώστε το -8 στο τετράγωνο.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Πολλαπλασιάστε το -4 επί 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Προσθέστε το 64 και το -28.
x=\frac{-\left(-8\right)±6}{2}
Λάβετε την τετραγωνική ρίζα του 36.
x=\frac{8±6}{2}
Το αντίθετο ενός αριθμού -8 είναι 8.
x=\frac{14}{2}
Λύστε τώρα την εξίσωση x=\frac{8±6}{2} όταν το ± είναι συν. Προσθέστε το 8 και το 6.
x=7
Διαιρέστε το 14 με το 2.
x=\frac{2}{2}
Λύστε τώρα την εξίσωση x=\frac{8±6}{2} όταν το ± είναι μείον. Αφαιρέστε 6 από 8.
x=1
Διαιρέστε το 2 με το 2.
x=7 x=1
Η εξίσωση έχει πλέον λυθεί.
10+\left(x-5\right)x=\left(x+1\right)\times 3
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -1,5 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το \left(x-5\right)\left(x+1\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των \left(x-5\right)\left(x+1\right),x+1,x-5.
10+x^{2}-5x=\left(x+1\right)\times 3
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-5 με το x.
10+x^{2}-5x=3x+3
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x+1 με το 3.
10+x^{2}-5x-3x=3
Αφαιρέστε 3x και από τις δύο πλευρές.
10+x^{2}-8x=3
Συνδυάστε το -5x και το -3x για να λάβετε -8x.
x^{2}-8x=3-10
Αφαιρέστε 10 και από τις δύο πλευρές.
x^{2}-8x=-7
Αφαιρέστε 10 από 3 για να λάβετε -7.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Διαιρέστε το -8, τον συντελεστή του όρου x, με το 2 για να λάβετε -4. Στη συνέχεια, προσθέστε το τετράγωνο του -4 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-8x+16=-7+16
Υψώστε το -4 στο τετράγωνο.
x^{2}-8x+16=9
Προσθέστε το -7 και το 16.
\left(x-4\right)^{2}=9
Παραγον x^{2}-8x+16. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-4=3 x-4=-3
Απλοποιήστε.
x=7 x=1
Προσθέστε 4 και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}