Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x και x+1 είναι x\left(x+1\right). Πολλαπλασιάστε το \frac{1}{x} επί \frac{x+1}{x+1}. Πολλαπλασιάστε το \frac{1}{x+1} επί \frac{x}{x}.
\frac{x+1-x}{x\left(x+1\right)}
Από τη στιγμή που οι αριθμοί \frac{x+1}{x\left(x+1\right)} και \frac{x}{x\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{1}{x\left(x+1\right)}
Συνδυάστε παρόμοιους όρους στο x+1-x.
\frac{1}{x^{2}+x}
Αναπτύξτε το x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x και x+1 είναι x\left(x+1\right). Πολλαπλασιάστε το \frac{1}{x} επί \frac{x+1}{x+1}. Πολλαπλασιάστε το \frac{1}{x+1} επί \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-x}{x\left(x+1\right)})
Από τη στιγμή που οι αριθμοί \frac{x+1}{x\left(x+1\right)} και \frac{x}{x\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x\left(x+1\right)})
Συνδυάστε παρόμοιους όρους στο x+1-x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}+x})
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x με το x+1.
-\left(x^{2}+x^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})
Εάν F είναι η σύνθεση των δύο διαφορίσιμων συναρτήσεων f\left(u\right) και u=g\left(x\right), αυτό σημαίνει ότι, εάν F\left(x\right)=f\left(g\left(x\right)\right), τότε η παράγωγος της F είναι η παράγωγος της f ως προς u επί την παράγωγο της g ως προς x, δηλαδή, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}+x^{1}\right)^{-2}\left(2x^{2-1}+x^{1-1}\right)
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\left(x^{2}+x^{1}\right)^{-2}\left(-2x^{1}-x^{0}\right)
Απλοποιήστε.
\left(x^{2}+x\right)^{-2}\left(-2x-x^{0}\right)
Για κάθε όρο t, t^{1}=t.
\left(x^{2}+x\right)^{-2}\left(-2x-1\right)
Για κάθε όρο t εκτός 0, t^{0}=1.