Λύση ως προς x (complex solution)
x=\frac{2\cos(\theta )e^{180i-i\theta }}{\left(e^{-i\theta +180i}\right)^{2}+1}
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}-\frac{113\pi }{2}+180
Λύση ως προς x
x=\frac{\cos(\theta )}{\sin(180)\sin(\theta )+\cos(180)\cos(\theta )}
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}-\frac{113\pi }{2}+180
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x\cos(180-\theta )=\cos(\theta )
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\cos(180-\theta )x=\cos(\theta )
Η εξίσωση είναι σε τυπική μορφή.
\frac{\cos(180-\theta )x}{\cos(180-\theta )}=\frac{\cos(\theta )}{\cos(180-\theta )}
Διαιρέστε και τις δύο πλευρές με \cos(180-\theta ).
x=\frac{\cos(\theta )}{\cos(180-\theta )}
Η διαίρεση με το \cos(180-\theta ) αναιρεί τον πολλαπλασιασμό με το \cos(180-\theta ).
x\cos(180-\theta )=\cos(\theta )
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\cos(180-\theta )x=\cos(\theta )
Η εξίσωση είναι σε τυπική μορφή.
\frac{\cos(180-\theta )x}{\cos(180-\theta )}=\frac{\cos(\theta )}{\cos(180-\theta )}
Διαιρέστε και τις δύο πλευρές με \cos(180-\theta ).
x=\frac{\cos(\theta )}{\cos(180-\theta )}
Η διαίρεση με το \cos(180-\theta ) αναιρεί τον πολλαπλασιασμό με το \cos(180-\theta ).
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}