Direkt zum Inhalt
Nach x auflösen (komplexe Lösung)
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{6}-x^{3}+4-2=0
Subtrahieren Sie 2 von beiden Seiten.
x^{6}-x^{3}+2=0
Subtrahieren Sie 2 von 4, um 2 zu erhalten.
t^{2}-t+2=0
Ersetzen Sie x^{3} durch t.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 2}}{2}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -1 und c durch 2.
t=\frac{1±\sqrt{-7}}{2}
Berechnungen ausführen.
t=\frac{1+\sqrt{7}i}{2} t=\frac{-\sqrt{7}i+1}{2}
Lösen Sie die Gleichung t=\frac{1±\sqrt{-7}}{2}, wenn ± Plus ist und wenn ± minus ist.
x=\sqrt[6]{2}e^{\frac{\arctan(\sqrt{7})i+4\pi i}{3}} x=\sqrt[6]{2}e^{\frac{\arctan(\sqrt{7})i+2\pi i}{3}} x=\sqrt[6]{2}e^{\frac{\arctan(\sqrt{7})i}{3}} x=\sqrt[6]{2}e^{-\frac{\arctan(\sqrt{7})i}{3}} x=\sqrt[6]{2}e^{\frac{-\arctan(\sqrt{7})i+4\pi i}{3}} x=\sqrt[6]{2}e^{\frac{-\arctan(\sqrt{7})i+2\pi i}{3}}
Weil x=t^{3}, erhalten Sie die Lösungen durch Lösen der Gleichung für jedes t.