Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

\left(x^{3}-1\right)\left(x^{3}+1\right)
x^{6}-1 als \left(x^{3}\right)^{2}-1^{2} umschreiben. Die Differenz der Quadrate kann mithilfe der Regel faktorisiert werden: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x^{2}+x+1\right)
Betrachten Sie x^{3}-1. x^{3}-1 als x^{3}-1^{3} umschreiben. Die Differenz der dritten Potenzen kann nach folgender Regel faktorisiert werden: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+1\right)\left(x^{2}-x+1\right)
Betrachten Sie x^{3}+1. x^{3}+1 als x^{3}+1^{3} umschreiben. Die Summe von Cubes kann mithilfe der Regel faktorisiert werden: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x^{2}-x+1\right)\left(x+1\right)\left(x^{2}+x+1\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um. Die folgenden Polynome sind nicht faktorisiert, weil sie keine rationalen Nullstellen besitzen: x^{2}-x+1,x^{2}+x+1.