Direkt zum Inhalt
Für x lösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}-x-2=0
Um die Ungleichung zu lösen, faktorisieren Sie die linke Seite. Ein quadratisches Polynom kann mithilfe der Transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisiert werden, wobei x_{1} und x_{2} die Lösungen der quadratischen Gleichung ax^{2}+bx+c=0 sind.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-2\right)}}{2}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -1 und c durch -2.
x=\frac{1±3}{2}
Berechnungen ausführen.
x=2 x=-1
Lösen Sie die Gleichung x=\frac{1±3}{2}, wenn ± Plus ist und wenn ± minus ist.
\left(x-2\right)\left(x+1\right)>0
Die Ungleichung umschreiben, indem Sie die erhaltenen Lösungen verwenden.
x-2<0 x+1<0
Damit das Produkt positiv ist, müssen x-2 und x+1 beide negativ oder beide positiv sein. Erwägen Sie den Fall, wenn x-2 und x+1 beide negativ sind.
x<-1
Die Lösung, die beide Ungleichungen erfüllt, lautet x<-1.
x+1>0 x-2>0
Erwägen Sie den Fall, wenn x-2 und x+1 beide positiv sind.
x>2
Die Lösung, die beide Ungleichungen erfüllt, lautet x>2.
x<-1\text{; }x>2
Die endgültige Lösung ist die Vereinigung der erhaltenen Lösungen.