Nach x auflösen
x=-4
x=3
Diagramm
Teilen
In die Zwischenablage kopiert
x^{2}-9-3=-x
Subtrahieren Sie 3 von beiden Seiten.
x^{2}-12=-x
Subtrahieren Sie 3 von -9, um -12 zu erhalten.
x^{2}-12+x=0
Auf beiden Seiten x addieren.
x^{2}+x-12=0
Ordnen Sie das Polynom neu an, um es in die Standardform zu bringen. Platzieren Sie die Terme in der Reihenfolge von der höchsten zur niedrigsten Potenz.
a+b=1 ab=-12
Um die Gleichung, den Faktor x^{2}+x-12 mithilfe der Formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) zu lösen. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,12 -2,6 -3,4
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -12 ergeben.
-1+12=11 -2+6=4 -3+4=1
Die Summe für jedes Paar berechnen.
a=-3 b=4
Die Lösung ist das Paar, das die Summe 1 ergibt.
\left(x-3\right)\left(x+4\right)
Schreiben Sie den faktorisierten Ausdruck "\left(x+a\right)\left(x+b\right)" mit den erhaltenen Werten um.
x=3 x=-4
Um Lösungen für die Gleichungen zu finden, lösen Sie x-3=0 und x+4=0.
x^{2}-9-3=-x
Subtrahieren Sie 3 von beiden Seiten.
x^{2}-12=-x
Subtrahieren Sie 3 von -9, um -12 zu erhalten.
x^{2}-12+x=0
Auf beiden Seiten x addieren.
x^{2}+x-12=0
Ordnen Sie das Polynom neu an, um es in die Standardform zu bringen. Platzieren Sie die Terme in der Reihenfolge von der höchsten zur niedrigsten Potenz.
a+b=1 ab=1\left(-12\right)=-12
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als x^{2}+ax+bx-12 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,12 -2,6 -3,4
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -12 ergeben.
-1+12=11 -2+6=4 -3+4=1
Die Summe für jedes Paar berechnen.
a=-3 b=4
Die Lösung ist das Paar, das die Summe 1 ergibt.
\left(x^{2}-3x\right)+\left(4x-12\right)
x^{2}+x-12 als \left(x^{2}-3x\right)+\left(4x-12\right) umschreiben.
x\left(x-3\right)+4\left(x-3\right)
Klammern Sie x in der ersten und 4 in der zweiten Gruppe aus.
\left(x-3\right)\left(x+4\right)
Klammern Sie den gemeinsamen Term x-3 aus, indem Sie die distributive Eigenschaft verwenden.
x=3 x=-4
Um Lösungen für die Gleichungen zu finden, lösen Sie x-3=0 und x+4=0.
x^{2}-9-3=-x
Subtrahieren Sie 3 von beiden Seiten.
x^{2}-12=-x
Subtrahieren Sie 3 von -9, um -12 zu erhalten.
x^{2}-12+x=0
Auf beiden Seiten x addieren.
x^{2}+x-12=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 1 und c durch -12, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
1 zum Quadrat.
x=\frac{-1±\sqrt{1+48}}{2}
Multiplizieren Sie -4 mit -12.
x=\frac{-1±\sqrt{49}}{2}
Addieren Sie 1 zu 48.
x=\frac{-1±7}{2}
Ziehen Sie die Quadratwurzel aus 49.
x=\frac{6}{2}
Lösen Sie jetzt die Gleichung x=\frac{-1±7}{2}, wenn ± positiv ist. Addieren Sie -1 zu 7.
x=3
Dividieren Sie 6 durch 2.
x=-\frac{8}{2}
Lösen Sie jetzt die Gleichung x=\frac{-1±7}{2}, wenn ± negativ ist. Subtrahieren Sie 7 von -1.
x=-4
Dividieren Sie -8 durch 2.
x=3 x=-4
Die Gleichung ist jetzt gelöst.
x^{2}-9+x=3
Auf beiden Seiten x addieren.
x^{2}+x=3+9
Auf beiden Seiten 9 addieren.
x^{2}+x=12
Addieren Sie 3 und 9, um 12 zu erhalten.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Dividieren Sie 1, den Koeffizienten des Terms x, durch 2, um \frac{1}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{1}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Bestimmen Sie das Quadrat von \frac{1}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Addieren Sie 12 zu \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Faktor x^{2}+x+\frac{1}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Vereinfachen.
x=3 x=-4
\frac{1}{2} von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}