Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x\left(x+2-1\right)=0
Klammern Sie x aus.
x=0 x=-1
Um Lösungen für die Gleichungen zu finden, lösen Sie x=0 und x+1=0.
x^{2}+x=0
Kombinieren Sie 2x und -x, um x zu erhalten.
x=\frac{-1±\sqrt{1^{2}}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 1 und c durch 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2}
Ziehen Sie die Quadratwurzel aus 1^{2}.
x=\frac{0}{2}
Lösen Sie jetzt die Gleichung x=\frac{-1±1}{2}, wenn ± positiv ist. Addieren Sie -1 zu 1.
x=0
Dividieren Sie 0 durch 2.
x=-\frac{2}{2}
Lösen Sie jetzt die Gleichung x=\frac{-1±1}{2}, wenn ± negativ ist. Subtrahieren Sie 1 von -1.
x=-1
Dividieren Sie -2 durch 2.
x=0 x=-1
Die Gleichung ist jetzt gelöst.
x^{2}+x=0
Kombinieren Sie 2x und -x, um x zu erhalten.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Dividieren Sie 1, den Koeffizienten des Terms x, durch 2, um \frac{1}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{1}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Bestimmen Sie das Quadrat von \frac{1}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
Faktor x^{2}+x+\frac{1}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Vereinfachen.
x=0 x=-1
\frac{1}{2} von beiden Seiten der Gleichung subtrahieren.