Faktorisieren
\frac{x\left(x-2\right)\left(x-1\right)}{2}
Auswerten
\frac{x\left(x-2\right)\left(x-1\right)}{2}
Diagramm
Teilen
In die Zwischenablage kopiert
\frac{x^{3}-3x^{2}+2x}{2}
Klammern Sie \frac{1}{2} aus.
x\left(x^{2}-3x+2\right)
Betrachten Sie x^{3}-3x^{2}+2x. Klammern Sie x aus.
a+b=-3 ab=1\times 2=2
Betrachten Sie x^{2}-3x+2. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als x^{2}+ax+bx+2 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
a=-2 b=-1
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b negativ ist, sind a und b beide negativ. Das einzige derartige Paar ist die Lösung des Systems.
\left(x^{2}-2x\right)+\left(-x+2\right)
x^{2}-3x+2 als \left(x^{2}-2x\right)+\left(-x+2\right) umschreiben.
x\left(x-2\right)-\left(x-2\right)
Klammern Sie x in der ersten und -1 in der zweiten Gruppe aus.
\left(x-2\right)\left(x-1\right)
Klammern Sie den gemeinsamen Term x-2 aus, indem Sie die distributive Eigenschaft verwenden.
\frac{x\left(x-2\right)\left(x-1\right)}{2}
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}