Nach H auflösen
H=\frac{2d\left(M+7\right)}{3}
Nach M auflösen
\left\{\begin{matrix}M=\frac{3H}{2d}-7\text{, }&d\neq 0\\M\in \mathrm{R}\text{, }&H=0\text{ and }d=0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
H=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Verwenden Sie das Distributivgesetz, um \frac{2}{3} mit 7+M zu multiplizieren.
H=\frac{14}{3}d+\frac{2}{3}Md
Verwenden Sie das Distributivgesetz, um \frac{14}{3}+\frac{2}{3}M mit d zu multiplizieren.
H=\left(\frac{14}{3}+\frac{2}{3}M\right)d
Verwenden Sie das Distributivgesetz, um \frac{2}{3} mit 7+M zu multiplizieren.
H=\frac{14}{3}d+\frac{2}{3}Md
Verwenden Sie das Distributivgesetz, um \frac{14}{3}+\frac{2}{3}M mit d zu multiplizieren.
\frac{14}{3}d+\frac{2}{3}Md=H
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\frac{2}{3}Md=H-\frac{14}{3}d
Subtrahieren Sie \frac{14}{3}d von beiden Seiten.
\frac{2d}{3}M=-\frac{14d}{3}+H
Die Gleichung weist die Standardform auf.
\frac{3\times \frac{2d}{3}M}{2d}=\frac{3\left(-\frac{14d}{3}+H\right)}{2d}
Dividieren Sie beide Seiten durch \frac{2}{3}d.
M=\frac{3\left(-\frac{14d}{3}+H\right)}{2d}
Division durch \frac{2}{3}d macht die Multiplikation mit \frac{2}{3}d rückgängig.
M=\frac{3H}{2d}-7
Dividieren Sie H-\frac{14d}{3} durch \frac{2}{3}d.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}