Nach x auflösen
x=-\frac{1}{5}=-0,2
x=1
Diagramm
Teilen
In die Zwischenablage kopiert
a+b=-4 ab=5\left(-1\right)=-5
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als 5x^{2}+ax+bx-1 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
a=-5 b=1
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b negativ ist, hat die negative Zahl einen größeren Absolutwert als die positive. Das einzige derartige Paar ist die Lösung des Systems.
\left(5x^{2}-5x\right)+\left(x-1\right)
5x^{2}-4x-1 als \left(5x^{2}-5x\right)+\left(x-1\right) umschreiben.
5x\left(x-1\right)+x-1
Klammern Sie 5x in 5x^{2}-5x aus.
\left(x-1\right)\left(5x+1\right)
Klammern Sie den gemeinsamen Term x-1 aus, indem Sie die distributive Eigenschaft verwenden.
x=1 x=-\frac{1}{5}
Um Lösungen für die Gleichungen zu finden, lösen Sie x-1=0 und 5x+1=0.
5x^{2}-4x-1=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\left(-1\right)}}{2\times 5}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 5, b durch -4 und c durch -1, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 5\left(-1\right)}}{2\times 5}
-4 zum Quadrat.
x=\frac{-\left(-4\right)±\sqrt{16-20\left(-1\right)}}{2\times 5}
Multiplizieren Sie -4 mit 5.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2\times 5}
Multiplizieren Sie -20 mit -1.
x=\frac{-\left(-4\right)±\sqrt{36}}{2\times 5}
Addieren Sie 16 zu 20.
x=\frac{-\left(-4\right)±6}{2\times 5}
Ziehen Sie die Quadratwurzel aus 36.
x=\frac{4±6}{2\times 5}
Das Gegenteil von -4 ist 4.
x=\frac{4±6}{10}
Multiplizieren Sie 2 mit 5.
x=\frac{10}{10}
Lösen Sie jetzt die Gleichung x=\frac{4±6}{10}, wenn ± positiv ist. Addieren Sie 4 zu 6.
x=1
Dividieren Sie 10 durch 10.
x=-\frac{2}{10}
Lösen Sie jetzt die Gleichung x=\frac{4±6}{10}, wenn ± negativ ist. Subtrahieren Sie 6 von 4.
x=-\frac{1}{5}
Verringern Sie den Bruch \frac{-2}{10} um den niedrigsten Term, indem Sie 2 extrahieren und aufheben.
x=1 x=-\frac{1}{5}
Die Gleichung ist jetzt gelöst.
5x^{2}-4x-1=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
5x^{2}-4x-1-\left(-1\right)=-\left(-1\right)
Addieren Sie 1 zu beiden Seiten der Gleichung.
5x^{2}-4x=-\left(-1\right)
Die Subtraktion von -1 von sich selbst ergibt 0.
5x^{2}-4x=1
Subtrahieren Sie -1 von 0.
\frac{5x^{2}-4x}{5}=\frac{1}{5}
Dividieren Sie beide Seiten durch 5.
x^{2}-\frac{4}{5}x=\frac{1}{5}
Division durch 5 macht die Multiplikation mit 5 rückgängig.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\frac{1}{5}+\left(-\frac{2}{5}\right)^{2}
Dividieren Sie -\frac{4}{5}, den Koeffizienten des Terms x, durch 2, um -\frac{2}{5} zu erhalten. Addieren Sie dann das Quadrat von -\frac{2}{5} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{1}{5}+\frac{4}{25}
Bestimmen Sie das Quadrat von -\frac{2}{5}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{9}{25}
Addieren Sie \frac{1}{5} zu \frac{4}{25}, indem Sie einen gemeinsamen Nenner suchen und die Zähler addieren. Kürzen Sie anschließend den Bruch auf die kleinsten möglichen Terme.
\left(x-\frac{2}{5}\right)^{2}=\frac{9}{25}
Faktor x^{2}-\frac{4}{5}x+\frac{4}{25}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-\frac{2}{5}=\frac{3}{5} x-\frac{2}{5}=-\frac{3}{5}
Vereinfachen.
x=1 x=-\frac{1}{5}
Addieren Sie \frac{2}{5} zu beiden Seiten der Gleichung.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}