Direkt zum Inhalt
Nach x auflösen (komplexe Lösung)
Tick mark Image
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck 60 durch p dividiert wird und der Leitkoeffizient 2 durch q. Listen Sie alle Kandidaten \frac{p}{q} auf.
x=-4
Finden Sie eine solche Wurzel, indem Sie alle ganzzahligen Werte ausprobieren, beginnend mit dem gemäß dem absoluten Wert kleinsten. Wenn keine ganzzahligen Wurzeln gefunden werden, probieren Sie Brüche aus.
2x^{2}-2x+15=0
Bei Faktorisieren Lehrsatz ist x-k ein Faktor des Polynoms für jede Stamm k. Dividieren Sie 2x^{3}+6x^{2}+7x+60 durch x+4, um 2x^{2}-2x+15 zu erhalten. Lösen Sie die Gleichung so auf, dass das Ergebnis gleich 0 ist.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ersetzen Sie in der quadratischen Gleichung a durch 2, b durch -2 und c durch 15.
x=\frac{2±\sqrt{-116}}{4}
Berechnungen ausführen.
x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Lösen Sie die Gleichung 2x^{2}-2x+15=0, wenn ± Plus ist und wenn ± minus ist.
x=-4 x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Alle gefundenen Lösungen auflisten
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck 60 durch p dividiert wird und der Leitkoeffizient 2 durch q. Listen Sie alle Kandidaten \frac{p}{q} auf.
x=-4
Finden Sie eine solche Wurzel, indem Sie alle ganzzahligen Werte ausprobieren, beginnend mit dem gemäß dem absoluten Wert kleinsten. Wenn keine ganzzahligen Wurzeln gefunden werden, probieren Sie Brüche aus.
2x^{2}-2x+15=0
Bei Faktorisieren Lehrsatz ist x-k ein Faktor des Polynoms für jede Stamm k. Dividieren Sie 2x^{3}+6x^{2}+7x+60 durch x+4, um 2x^{2}-2x+15 zu erhalten. Lösen Sie die Gleichung so auf, dass das Ergebnis gleich 0 ist.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ersetzen Sie in der quadratischen Gleichung a durch 2, b durch -2 und c durch 15.
x=\frac{2±\sqrt{-116}}{4}
Berechnungen ausführen.
x\in \emptyset
Da die Quadratwurzel einer negativen Zahl im reellen Zahlenraum nicht definiert ist, gibt es keine Lösungen.
x=-4
Alle gefundenen Lösungen auflisten